• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

서브밴드 가중치를 이용한 잡음에 강인한 화자검증 (Noise Robust Speaker Verification Using Sub-Band Weighting)

6 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2009.04
6P 미리보기
서브밴드 가중치를 이용한 잡음에 강인한 화자검증
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 전문성
    • 신뢰성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 첨단 음성 인식 기술의 혁신적인 접근법 제시
    • 🚀 잡음 환경에서의 화자검증 성능 개선 방법론 제공
    • 💡 실용적인 신호 처리 알고리즘의 구체적인 개선 방안 제시

    미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 28권 / 3호 / 279 ~ 284페이지
    · 저자명 : 김성탁, 지미경, 김회린

    초록

    화자검증은 발성화자가 제시화자 (claimed speaker)인지 아닌지를 구별하는 것이다. 기존의 화자검증 시스템인 GMM-UBM
    방식의 화자검증 시스템은 무잡음 환경에서는 높은 검증성능을 보이지만, 잡음환경에서는 성능이 급격히 떨어지는 단점이
    있다. 이런 단점을 극복하기 위해 멀티밴드를 이용한 방법인 특징벡터 재결합방법이 제안되었지만, 특징벡터 재결합방법은
    전체 서브밴드 특징벡터들을 사용하여 유사도를 계산하는 단점이 있다. 이런 단점을 극복하기 위해 기 발표된 이전 논문에서
    각 서브밴드 유사도를 독립적으로 계산하는 변형된 특징벡터 재결합방법을 제안하였고, 본 논문에서는 변형된 특징벡터
    재결합방법과 각 서브밴드들의 신뢰도를 나타내는 신호 대 잡음비를 이용한 가중치를 이용하여 잡음환경에서 기존의 특징벡
    터 재결합방법에 비해 에러를 28% 감소시켰다.

    영어초록

    Speaker verification determines whether the claimed speaker is accepted based on the score of the test utterance.
    In recent years, methods based on Gaussian mixture models and universal background model have been the dominant
    approaches for text-independent speaker verification. These speaker verification systems based on these methods
    provide very good performance under laboratory conditions. However, in real situations, the performance of speaker
    verification system is degraded dramatically. For overcoming this performance degradation, the feature recombination
    method was proposed, but this method had a drawback that whole sub-band feature vectors are used to compute
    the likelihood scores. To deal with this drawback, a modified feature recombination method which can use each
    sub-band likelihood score independently was proposed in our previous research. In this paper, we propose a sub-band
    weighting method based on sub-band signal-to-noise ratio which is combined with previously proposed modified
    feature recombination. This proposed method reduces errors by 28% compared with the conventional feature
    recombination method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:32 오후