• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

사례기반추론의 유사 임계치 및 커버리지 최적화 (Optimizing Similarity Threshold and Coverage of CBR)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.07.11 최종저작일 2013.08
8P 미리보기
사례기반추론의 유사 임계치 및 커버리지 최적화
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 논리성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🧠 사례기반추론(CBR)의 새로운 최적화 접근법 제시
    • 💡 실무 적용 가능한 온라인 쇼핑몰 마케팅 사례 분석
    • 🔬 유사 임계치와 커버리지를 결합한 혁신적인 연구 방법론

    미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 2권 / 8호 / 535 ~ 542페이지
    · 저자명 : 안현철

    초록

    사례기반추론(CBR)은 많은 장점으로 인해 지금까지 의료진단, 생산계획, 고객분류 등 다양한 분야의 의사결정 지원에 적용되어 왔다. 그러나, 효과적인 CBR 시스템을 설계, 구축하기 위해서는 연구자가 직관적으로 설정해야 할 많은 설계요소들이 존재한다. 본 연구에서는 이러한 CBR의 여러 설계요소들 중 사례 검색 단계에서 결합할 이웃 사례들을 보다 효과적으로 선정할 수 있는 새로운 모형을 제시한다. 기존 연구에서는 결합할 이웃 사례를 선정하는 방법으로 사전에 정해진 이웃사례의 수(k-NN의 k)를 적용하든가, 혹은 최대 유사도의 상대적 비율을 임계치로 사용하는 방식을 적용해 왔다. 하지만, 본 연구에서는 결합할 유사사례를 선택하는 새로운 기준으로 0에서 1사이의 값을 갖는 절대적 유사 임계치를 사용할 것을 제안한다. 이 경우, 임계치 값이 과도하게 작아지게 되면, 예측결과의 생성이 잘 이루어지지 않을 수 있는 문제가 발생할 수 있다. 이에, 전체 학습사례들 중에서 예측결과가 생성된 사례의 비중을 커버리지(coverage)로 정의하고, 이를 유사 임계치 최적화 시제약조건으로 설정함으로서, 사용자가 원하는 수준의 커버리지는 유지한 상태에서 가장 효과적인 유사 사례를 찾아 추론할 수 있도록 모형을 설계하였다. 제안 모형의 유용성을 검증하기 위해, 본 연구에서는 이 모형을 실존하는 국내 한 온라인 쇼핑몰의 표적 마케팅 사례에 적용하였다. 그 결과, 제안 모형이 CBR의 예측 성과를 유의미하게 개선시킬 수 있음을 확인할 수 있었다.

    영어초록

    Since case-based reasoning(CBR) has many advantages, it has been used for supporting decision making in various areas including medical checkup, production planning, customer classification, and so on. However, there are several factors to be set by heuristics when designing effective CBR systems. Among these factors, this study addresses the issue of selecting appropriate neighbors in case retrieval step. As the criterion for selecting appropriate neighbors, conventional studies have used the preset number of neighbors to combine(i.e. k of k-nearest neighbor), or the relative portion of the maximum similarity. However, this study proposes to use the absolute similarity threshold varying from 0 to 1, as the criterion for selecting appropriate neighbors to combine. In this case, too small similarity threshold value may make the model rarely produce the solution. To avoid this, we propose to adopt the coverage, which implies the ratio of the cases in which solutions are produced over the total number of the training cases, and to set it as the constraint when optimizing the similarity threshold. To validate the usefulness of the proposed model, we applied it to a real-world target marketing case of an online shopping mall in Korea. As a result, we found that the proposed model might significantly improve the performance of CBR.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 23일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:13 오전