• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

3축 가속도 센서를 이용한 낙상 검출 시스템 구현 (Implementation of Falls Detection System Using 3-axial Accelerometer Sensor)

9 페이지
기타파일
최초등록일 2025.07.10 최종저작일 2010.05
9P 미리보기
3축 가속도 센서를 이용한 낙상 검출 시스템 구현
  • 이 자료를 선택해야 하는 이유
    이 내용은 AI를 통해 자동 생성된 정보로, 참고용으로만 활용해 주세요.
    • 신뢰성
    • 전문성
    • 실용성
    • 유사도 지수
      참고용 안전
    • 🔬 정밀한 낙상 검출 알고리즘 제시
    • 📊 실험적 검증을 통한 높은 신뢰성 확보
    • 🚑 노인 및 고위험군 안전 모니터링에 직접적 활용 가능성

    미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 11권 / 5호 / 1564 ~ 1572페이지
    · 저자명 : 전아영, 유주연, 박근철, 전계록

    초록

    본 연구에서는 3축 가속도 신호를 이용하여 낙상과 낙상 방향을 검출하는 시스템을 구현하였다. 가속도 신호는 3축 가속도 센서로부터 획득하였으며, 획득된 신호를 USB 인터페이스를 통하여 PC에 전달하였다. PC에 전송된 신호를 제안한 알고리즘을 사용하여 낙상을 검출하였으며, 퍼지 분류기를 사용하여 낙상의 방향을 분류하였다. 실험을 위하여 실험대상군 6명 선정하였으며, 가슴에 가속도계를 부착한 후 실험을 수행하였다. 실험대상자는 5초 동안 정상 보행을 한 후 4 가지 방향(전·후·좌·우)으로 낙상이 발생하도록 하였으며, 낙상에 소요되는 시간은 최소 2초로 설정하였다. 본 연구에서 제안된 알고리즘을 이용하여 낙상을 검출하였으며 낙상 발생 후 1초부터 데이터를 분석하고 퍼지 분류기를 이용하여 낙상방향을 분류하였다. 낙상 검출율은 평균 94.79%이었다. 낙상 방향에 따른 분류율은 front_fall은 95.83%, back_fall은 100%, left_fall 은 87.5%, right_fall은 95.83%이었다.

    영어초록

    In this study, the falls detection and direction classification system was implemented using 3-axial acceleration signal. The acceleration signals were acquired from the 3-axial accelerometer(MMA7260Q, Freescale, USA), and then transmitted to the computer through USB interface. The implemented system can detect falls using the newly proposed algorithm, and also classify the direction of falls using fuzzy classifier. The 6 subjects was selected for experiment and the accelerometer was attached on each subject's chest. Each subject walked in normal pace for 5 seconds, and then the fall down according to the four direction(front_fall, back_fall, left_fall and right_fall) during at least 2 second. The falls was easily detect using the newly proposed algorithm in this study. The acquired signals were analyzed after 1 second from generating falls. The fuzzy classifier was used to classify the direction of falls. The mean value of the falls detection rate was 94.79 %. The classifier rate according to falls direction were 95.83% in case of front falls, 100% incase of back falls, 87.5% in case of left falls, and 95.83% in case of right falls.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 25일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:24 오전