• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net (Sampling-based Super Resolution U-net for Pattern Expression of Local Areas)

7 페이지
기타파일
최초등록일 2025.07.09 최종저작일 2022.10
7P 미리보기
국소부위 패턴 표현을 위한 샘플링 기반 초해상도 U-Net
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷방송통신학회
    · 수록지 정보 : 한국인터넷방송통신학회 논문지 / 22권 / 5호 / 185 ~ 191페이지
    · 저자명 : 이교석, 갈원모, 임명재

    초록

    본 연구에서는 U-Net, 잔차 신경망, 서브 픽셀 컨볼루션을 기반으로 새로운 초해상도 신경망을 제안한다.
    U-Net의 최대 풀링으로 인해 세부적인 정보의 손실이 일어나는 것을 막기 위해 서브 픽셀 컨볼루션을 활용한 다운 샘플링 그리고 연결을 제안한다. 이는 필터 안의 최대 값만으로 새로운 피처맵을 만드는 최대 풀링과 다르게 필터 안의 모든픽셀을 사용한다. 2x2 크기의 필터가 지나가면서 왼쪽 위, 오른쪽 위, 왼쪽 아래, 오른쪽 아래의 픽셀들로만 이루어진피처맵을 만든다. 이를 통해 크기가 절반이 되고, 피처맵이 개수가 4배가 된다. 그리고 연산량을 줄이기 위해 두 가지방법을 제안했다. 첫 번째는 U-Net의 업 컨볼루션 대신 연산량이 없고, 성능이 더 좋은 서브 픽셀 컨볼루션을 사용한다.
    두 번째는 U-Net의 연결 층 대신 두 피처 맵을 더하는 층을 사용한다. 밴치 마크 데이터 세트로 실험한 결과 스케일2의 set5 데이터를 제외하고 모든 스케일 및 벤치마크 데이터 세트에서 더 나은 PSNR 값을 보여주고, 국소부위의 패턴을 명확하게 표현할 수 있었다.

    영어초록

    In this study, we propose a novel super-resolution neural network based on U-Net, residual neural network, and sub-pixel convolution. To prevent the loss of detailed information due to the max pooling of U-Net, we propose down-sampling and connection using sub-pixel convolution. This uses all pixels in the filter, unlike the max pooling that creates a new feature map with only the max value in the filter. As a 2x2 size filter passes, it creates a feature map consisting only of pixels in the upper left, upper right, lower left, and lower right. This makes it half the size and quadruple the number of feature maps. And we propose two methods to reduce the computation. The first uses sub-pixel convolution, which has no computation, and has better performance, instead of up-convolution. The second uses a layer that adds two feature maps instead of the connection layer of the U-Net. Experiments with a banchmark dataset show better PSNR values on all scale and benchmark datasets except for set5 data on scale 2, and well represent local area patterns.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국인터넷방송통신학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:28 오전