• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Two-Pupil 광학 헤테로다인 스캐닝 시스템 기반의 힐버트 변환을 활용한 2-D 인코히어런트 이미징 구현 (Implementation of 2-D Incoherent Imaging using Hilbert Transform based on Two-Pupil Optical Heterodyne Scanning System)

7 페이지
기타파일
최초등록일 2025.07.05 최종저작일 2012.04
7P 미리보기
Two-Pupil 광학 헤테로다인 스캐닝 시스템 기반의 힐버트 변환을 활용한 2-D 인코히어런트 이미징 구현
  • 미리보기

    서지정보

    · 발행기관 : 한국항행학회
    · 수록지 정보 : 한국항행학회논문지 / 16권 / 2호 / 240 ~ 246페이지
    · 저자명 : 경민구, 도규봉

    초록

    지금까지의 힐버트 변환은 대부분 코히어런트 이미징에서만 활용되어 왔을 뿐 인코히어런트 이미징에 대해서는 그 적용이 미비했다. 본래의 광원 영역에서는 인코히어런트 물체의 힐버트 변환이 일정하게 중첩되는 문제가 발생하기 때문이다. 본 논문에서는 음이 아닌 강도(intensity) 분포 함수의 합성을 수행함으로써 인코히러언트 이미징의 문제점을 보완한 two-pupil 시스템을 적극 활용하여 코히어런트 이미징 대비 낮은 노이즈 특성, 물체의 위상 변화에 대한 강건함, 유연한 필터의 설계 등의 장점을 극대화한다. 제안하는 이미징 방식은 공간 영역에서 광학 전달 함수를 분할하여 필터링한 후 인코히어런트 물체의 힐버트 변환을 수행한다. 이를 바탕으로 광학 시스템에서의 두 pupil을 수학적으로 분석하고 디자인하여 two-pupil 광학 헤테로다인 스캐닝 시스템을 구현할 수 있다. 모의실험을 통해 제안하는 시스템을 바탕으로 2-D 홀로그램을 도출함으로써 인코히어런트 이미징에서도 힐버트 변환의 적용이 유효함을 확인할 수 있다. 또한 복소홀로그램의 복원을 통해 힐버트 변환만을 이용한 홀로그램에 비해 공간 영역에서 선명도가 개선된 홀로그램 영상도 획득할 수 있다.

    영어초록

    The Hilbert transform, which has been hitherto discussed in coherent imaging, is for the first time investigated in the context of incoherent imaging. Because the Hilbert transform of the information is superposed coherently with the original light field. We present a two-pupil optical heterodyne scanning system and analyze mathematically the design of its two pupils such that the optical system can perform the Hilbert transform on incoherent objects. In this paper, we review and formulate the definition of an analytic signal of a function and from which we can obtain the Hilbert transform of the function. and we analyze the design of pupils so as to obtain the Hilbert transform and show some 2-D simulations. Computer simulation results of the idea clarify the theoretical results.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국항행학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 15일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:58 오전