• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구 (A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis)

9 페이지
기타파일
최초등록일 2025.07.01 최종저작일 2019.12
9P 미리보기
주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국항해항만학회
    · 수록지 정보 : 한국항해항만학회지 / 43권 / 6호 / 335 ~ 343페이지
    · 저자명 : 김영롱, 김구종, 박준범

    초록

    최근 선박의 배기가스 규제가 강화되면서 연료소비량을 저감하기 위한 많은 방안들이 검토되고 있다. 그중에서도 선박으로부터 수집한 데이터를 활용하여 연료소모량을 예측하는 기계학습 모델을 개발하고자 하는 연구가 활발히 수행되고 있다. 하지만 많은 연구들이 학습모델의 주요 변수 선정이나 수집데이터의 처리 방법에 대한 고려가 미흡하였으며, 무분별한 데이터의 활용은 변수 간의 다중공선성 문제를 야기할 수도 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 주성분 분석을 이용하여 선박의 연료소비를 예측하는 방법을 제시하였다. 13K TEU 컨테이너 선박의 운항데이터에 주성분 분석을 수행하였으며, 추출한 주성분으로 회귀분석을 수행하여 연료소비 예측모델을 구현하였다. 평가용 데이터에 대한 모델의 설명력은 82.99%이었으며, 이러한 예측모델은 항해 계획 수립 시 운항자의 의사결정을 지원하고 항해 중 에너지 효율적인 운항상태 모니터링에 기여할 수 있을 것으로 기대된다.

    영어초록

    As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국항해항만학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:59 오후