PARTNER
검증된 파트너 제휴사 자료

다중 주파수 대역 convolutional neural network 기반지진 신호 검출 기법 (Earthquake detection based on convolutional neural network using multi-band frequency signals)

7 페이지
기타파일
최초등록일 2025.06.30 최종저작일 2019.01
7P 미리보기
다중 주파수 대역 convolutional neural network 기반지진 신호 검출 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국음향학회
    · 수록지 정보 : 한국음향학회지 / 38권 / 1호 / 23 ~ 29페이지
    · 저자명 : 김승일, 김동현, 신현학, 구본화, 고한석

    초록

    본 논문에서는 국내에서 발생한 지진 신호를 검출 및 식별하기 위한 방법을 다루었다. 국내에서 발생한 지진신호들을 분석해 본 결과 서로 다른 주파수 대역 신호의 특징들이 각각 분류를 위한 특징으로 적절함을 확인할 수 있었다. 이러한 분석 결과를 바탕으로 지진 신호에서 추출한 다중 주파수 대역 특징을 기반으로 하는 CNN(Convolutional Neural Network) 기법에 대해서 제안하였다. 제안하는 다중 주파수 대역 CNN 기법은 지진 신호에서 추출한 멜 스펙트럼에 대해서 각각 필터를 적용하여 서로 다른 주파수 대역(저/중/고 주파수)의 신호를 추출하였다. 추출된 신호들을바탕으로 각각 CNN 기반 분류를 수행하였고, 수행된 결과를 융합하여 최종적으로 지진 이벤트에 대해 식별하였다. 2018년 동안 대한민국에서 발생한 실제 지진데이터를 기반으로 하는 실험을 통해 제안하는 기법에 대한 효용성을 검증하였다.

    영어초록

    In this paper, a deep learning-based detection and classification using multi-band frequency signals is presented for detecting earthquakes prevalent in Korea. Based on an analysis of the previous earthquakes in Korea, it is observed that multi-band signals are appropriate for classifying earthquake signals. Therefore, in this paper, we propose a deep CNN (Convolutional Neural Network) using multi-band signals as training data. The proposed algorithm extracts the multi-band signals (Low/Medium/High frequency) by applying band pass filters to mel-spectrum of earthquake signals. Then, we construct three CNN architecture pipelines for extracting features and classifying the earthquake signals by a late fusion of the three CNNs. We validate effectiveness of the proposed method by performing various experiments for classifying the domestic earthquake signals detected in 2018.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국음향학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 29일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:06 오전