• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색 (Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model)

6 페이지
기타파일
최초등록일 2025.06.27 최종저작일 2023.10
6P 미리보기
CodeBERT 모델의 전이 학습 기반 코드 공통 취약점 탐색
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 12권 / 10호 / 431 ~ 436페이지
    · 저자명 : 박찬솔, 문소영, 김영철

    초록

    소프트웨어 공학 영역에 인공지능의 접목은 큰 화두 중 하나이다. 전 세계적으로 1) 인공지능을 통한 소프트웨어 공학, 2) 소프트웨어 공학을통한 인공지능 두 가지 방향으로 활발히 연구되고 있다. 그 중 소프트웨어 공학에 인공지능을 접목하여 나쁜 코드 영역을 식별하고 해당 부분을리팩토링하는 연구가 진행되고 있다. 해당 연구에서 인공지능이 나쁜 코드 요소의 패턴을 잘 학습하기 위해서는 학습하려는 나쁜 코드 요소가라벨링 된 데이터셋이 필요하다. 문제는 데이터셋이 부족할뿐더러, 자체적으로 수집한 데이터셋의 정확도는 신뢰할 수 없다. 이를 해결하기 위해코드 데이터 수집 시 전체 코드가 아닌 높은 복잡도를 가진 코드 모듈 영역을 대상으로만 나쁜 코드 데이터를 수집한다. 이후 수집한 데이터셋을CodeBERT 모델의 전이 학습하여 코드 공통 취약점을 탐색하는 방법을 제안한다. 해당 데이터셋을 통해 CodeBERT 모델이 코드의 공통 취약점패턴을 더 잘 학습할 수 있다. 이를 통해 전통적인 방법보다 인공지능 모델을 이용해 코드를 분석하고 공통 취약점 패턴을 더 정확하게 식별할수 있을 것으로 기대한다.

    영어초록

    Recently the incorporation of artificial intelligence approaches in the field of software engineering has been one of the big topics.
    In the world, there are actively studying in two directions: 1) software engineering for artificial intelligence and 2) artificial intelligencefor software engineering. We attempt to apply artificial intelligence to software engineering to identify and refactor bad code moduleareas. To learn the patterns of bad code elements well, we must have many datasets with bad code elements labeled correctly for artificialintelligence in this task. The current problems have insufficient datasets for learning and can not guarantee the accuracy of the datasetsthat we collected. To solve this problem, when collecting code data, bad code data is collected only for code module areas withhigh-complexity, not the entire code. We propose a method for exploring common weakness enumeration by learning the collected datasetbased on transfer learning of the CodeBERT model. The CodeBERT model learns the corresponding dataset more about common weaknesspatterns in code. With this approach, we expect to identify common weakness patterns more accurately better than one in traditionalsoftware engineering.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:32 오전