• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

재입원 예측 모형 개발에 관한 연구 (A Study on the Development of Readmission Predictive Model)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
13 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2019.04
13P 미리보기
재입원 예측 모형 개발에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 20권 / 4호 / 435 ~ 447페이지
    · 저자명 : 조윤정, 김유미, 함승우, 최준영, 백설경, 강성홍

    초록

    불필요한 재입원을 예방하기 위해서는 재입원 확률이 높은 집단을 집중적으로 관리할 필요가 있다. 이를 위해서는 재입원 예측모형의 개발이 필요하다. 재원예측 모형을 개발하기 위해 1개 대학병원의 2016년에서 2017년의 2년간의 퇴원요약환자 데이터를 수집하였다. 이때 재입원 환자는 연구 기간 내에 2번 이상 퇴원한 환자라 정의 하였다. 재입원환자의 특성을 파악하기 위해 기술통계와 교착분석을 실시하였다. 재입원 예측 모형개발은 데이터마이닝 기법인 로지스틱회귀모형, 신경망, 의사결정모형을 이용하였다. 모형평가는 AUC(Area Under Curve)를 이용하였다. 로지스틱회귀모형이 AUC가 0.81로 가장 우수하게 나옴에 따라 본 연구에서는 로지스틱 회귀모형을 최종 재입원 예측 모형으로 선정을 하였다. 로지스틱회귀모형에서 선정된 재입원에 영향을 끼치는 주요한 변수는 성별, 연령, 지역, 주진단군, Charlson 동반질환지수, 퇴원과, 응급실 경유 여부, 수술여부, 재원일수, 총비용, 보험종류 등이었다. 본 연구에서 개발한 모형은 1개병원의 2년치 자료이므로 일반화하기 에는 제한점이 있다. 추후에 여러 병원 장기간의 데이터를 수집하여 일반화 할 수 있는 모형을 개발하는 것이 필요하다. 더 나아가 계획에 없던 재입원 까지 예측을 할 수 있는 모형을 개발하는 것이 필요하다.

    영어초록

    In order to prevent unnecessary re-admission, it is necessary to intensively manage the groups with high probability of re-admission. For this, it is necessary to develop a re-admission prediction model. Two - year discharge summary data of one university hospital were collected from 2016 to 2017 to develop a predictive model of re-admission. In this case, the re-admitted patients were defined as those who were discharged more than once during the study period. We conducted descriptive statistics and crosstab analysis to identify the characteristics of rehospitalized patients. The re-admission prediction model was developed using logistic regression, neural network, and decision tree. AUC (Area Under Curve) was used for model evaluation. The logistic regression model was selected as the final re-admission predictive model because the AUC was the best at 0.81. The main variables affecting the selected rehospitalization in the logistic regression model were Residental regions, Age, CCS, Charlson Index Score, Discharge Dept., Via ER, LOS, Operation, Sex, Total payment, and Insurance. The model developed in this study was limited to generalization because it was two years data of one hospital. It is necessary to develop a model that can collect and generalize long-term data from various hospitals in the future. Furthermore, it is necessary to develop a model that can predict the re-admission that was not planned.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:44 오전