PARTNER
검증된 파트너 제휴사 자료

장바구니 크기가 연관규칙 척도의 정확성에 미치는 영향 (Effect of Market Basket Size on the Accuracy of Association Rule Measures)

20 페이지
기타파일
최초등록일 2025.06.24 최종저작일 2008.06
20P 미리보기
장바구니 크기가 연관규칙 척도의 정확성에 미치는 영향
  • 미리보기

    서지정보

    · 발행기관 : 한국경영정보학회
    · 수록지 정보 : Asia Pacific Journal of Information Systems / 18권 / 2호 / 95 ~ 114페이지
    · 저자명 : 김남규

    초록

    Recent interests in data mining result from the expansion of the amount of business data and the growing business needs for extracting valuable knowledge from the data and then utilizing it for decision making process. In particular, recent advances in association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from the voluminous transactional data. Certainly, one of the major purposes of association rule mining is to utilize acquired knowledge in providing marketing strategies such as cross-selling, sales promotion, and shelf-space allocation. In spite of the potential applicability of association rule mining, unfortunately, it is not often the case that the marketing mix acquired from data mining leads to the realized profit. The main difficulty of mining-based profit realization can be found in the fact that tremendous numbers of patterns are discovered by the association rule mining. Due to the too many patterns, data mining experts should perform additional mining of the results of initial mining in order to extract only actionable and profitable knowledge, which exhausts much time and costs.
    In the literature, a number of interestingness measures have been devised for estimating discovered patterns. Most of the measures can be directly calculated from what is known as a contingency table, which summarizes the sales frequencies of exclusive items or itemsets. A contingency table can provide brief insights into the relationship between two or more itemsets of concern. However, it is important to note that some useful information concerning sales transactions may be lost when a contingency table is constructed. For instance, information regarding the size of each market basket (i.e., the number of items in each transaction) cannot be described in a contingency table. It is natural that a larger basket has a tendency to consist of more sales patterns. Therefore, if two itemsets are sold together in a very large basket, it can be expected that the basket contains two or more patterns and that the two itemsets belong to mutually different patterns. Therefore, we should classify frequent itemset into two categories, inter-pattern co-occurrence and intra-pattern co-occurrence, and investigate the effect of the market basket size on the two categories. This notion implies that any interestingness measures for association rules should consider not only the total frequency of target itemsets but also the size of each basket.
    There have been many attempts on analyzing various interestingness measures in the literature. Most of them have conducted qualitative comparison among various measures. The studies proposed desirable properties of interestingness measures and then surveyed how many properties are obeyed by each measure. However, relatively few attentions have been made on evaluating how well the patterns discovered by each measure are regarded to be valuable in the real world. In this paper, attempts are made to propose two notions regarding association rule measures. First, a quantitative criterion for estimating accuracy of association rule measures is presented. According to this criterion, a measure can be considered to be accurate if it assigns high scores to meaningful patterns that actually exist and low scores to arbitrary patterns that co-occur by coincidence. Next, complementary measures are presented to improve the accuracy of traditional association rule measures. By adopting the factor of market basket size, the devised measures attempt to discriminate the co-occurrence of itemsets in a small basket from another co-occurrence in a large basket. Intensive computer simulations under various workloads were performed in order to analyze the accuracy of various interestingness measures including traditional measures and the proposed measures.

    영어초록

    Recent interests in data mining result from the expansion of the amount of business data and the growing business needs for extracting valuable knowledge from the data and then utilizing it for decision making process. In particular, recent advances in association rule mining techniques enable us to acquire knowledge concerning sales patterns among individual items from the voluminous transactional data. Certainly, one of the major purposes of association rule mining is to utilize acquired knowledge in providing marketing strategies such as cross-selling, sales promotion, and shelf-space allocation. In spite of the potential applicability of association rule mining, unfortunately, it is not often the case that the marketing mix acquired from data mining leads to the realized profit. The main difficulty of mining-based profit realization can be found in the fact that tremendous numbers of patterns are discovered by the association rule mining. Due to the too many patterns, data mining experts should perform additional mining of the results of initial mining in order to extract only actionable and profitable knowledge, which exhausts much time and costs.
    In the literature, a number of interestingness measures have been devised for estimating discovered patterns. Most of the measures can be directly calculated from what is known as a contingency table, which summarizes the sales frequencies of exclusive items or itemsets. A contingency table can provide brief insights into the relationship between two or more itemsets of concern. However, it is important to note that some useful information concerning sales transactions may be lost when a contingency table is constructed. For instance, information regarding the size of each market basket (i.e., the number of items in each transaction) cannot be described in a contingency table. It is natural that a larger basket has a tendency to consist of more sales patterns. Therefore, if two itemsets are sold together in a very large basket, it can be expected that the basket contains two or more patterns and that the two itemsets belong to mutually different patterns. Therefore, we should classify frequent itemset into two categories, inter-pattern co-occurrence and intra-pattern co-occurrence, and investigate the effect of the market basket size on the two categories. This notion implies that any interestingness measures for association rules should consider not only the total frequency of target itemsets but also the size of each basket.
    There have been many attempts on analyzing various interestingness measures in the literature. Most of them have conducted qualitative comparison among various measures. The studies proposed desirable properties of interestingness measures and then surveyed how many properties are obeyed by each measure. However, relatively few attentions have been made on evaluating how well the patterns discovered by each measure are regarded to be valuable in the real world. In this paper, attempts are made to propose two notions regarding association rule measures. First, a quantitative criterion for estimating accuracy of association rule measures is presented. According to this criterion, a measure can be considered to be accurate if it assigns high scores to meaningful patterns that actually exist and low scores to arbitrary patterns that co-occur by coincidence. Next, complementary measures are presented to improve the accuracy of traditional association rule measures. By adopting the factor of market basket size, the devised measures attempt to discriminate the co-occurrence of itemsets in a small basket from another co-occurrence in a large basket. Intensive computer simulations under various workloads were performed in order to analyze the accuracy of various interestingness measures including traditional measures and the proposed measures.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:57 오전