• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유전자 발현 메트릭에 기반한 모수적 방식의 유의 유전자 집합 검출 비교 연구 (A Comparative Study of Parametric Methods for Significant Gene Set Identification Depending on Various Expression Metrics)

8 페이지
기타파일
최초등록일 2025.06.23 최종저작일 2010.01
8P 미리보기
유전자 발현 메트릭에 기반한 모수적 방식의 유의 유전자 집합 검출 비교 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 37권 / 1호 / 1 ~ 8페이지
    · 저자명 : 김재영, 신미영

    초록

    최근 마이크로어레이 데이터를 기반으로 두 개의 샘플 그룹간에 유의한 발현 차이를 나타내는 생물학적 기능 그룹을 검출하기 위한 유전자 집합 분석(gene set analysis) 연구가 많은 주목을 받고 있다. 기존의 유의 유전자 검출 연구와는 달리, 유전자 집합 분석 연구는 유의한 유전자 집합과 이들의 기능적 특징을 함께 검출할 수 있다는 장점이 있다. 이러한 이유로 최근에는 PAGE, GSEA 등과 같은 다양한 통계적 방식의 유전자 집합 분석 방법들이 소개되고 있다. 특히, PAGE의 경우 두 샘플 그룹간의 유전자 발현 차이를 나타내는 스코어의 분포가 정규 분포임을 가정하는 모수적 접근 방식을 취하고 있다. 이러한 방법은 GSEA 등과 같은 비모수적 방식에 비해 계산량이 적고 성능이 비교적 우수한 장점이 있다. 하지만, PAGE에서 유전자 발현 차이를 정량화하기 위한 메트릭으로 사용하고 있는 AD(average difference)의 경우, 두 그룹간에 절대적 평균 발현 차이만을 고려하기 때문에 실제 유전자의 발현값 크기나 분산의 크기에 따른 상대적 중요성을 반영하지 못하는 문제가 있다. 본 논문에서는 이를 보완하기 위해 실제 유전자의 발현값 크기나 그룹 내 샘플들의 분산 정보 등을 스코어 계산에 함께 반영하는 WAD(weighted average difference), FC(Fisher’s criterion), 그리고 Abs_SNR(Absolute value of signal-to-noise ratio)을 모수적 방식의 유전자 집합 분석에 적용하고 이에 따른 유의 유전자 집합 검출 결과를 실험을 통해 비교 분석하였다.

    영어초록

    Recently lots of attention has been paid to gene set analysis for identifying differentially expressed gene-sets between two sample groups. Unlike earlier approaches, the gene set analysis enables us to find significant gene-sets along with their functional characteristics. For this reason, various novel approaches have been suggested lately for gene set analysis. As one of such, PAGE is a parametric approach that employs average difference (AD) as an expression metric to quantify expression differences between two sample groups and assumes that the distribution of gene scores is normal. This approach is preferred to non-parametric approach because of more effective performance. However, the metric AD does not reflect either gene expression intensities or variances over samples in calculating gene scores. Thus, in this paper, we investigate the usefulness of several other expression metrics for parametric gene-set analysis, which consider actual expression intensities of genes or their expression variances over samples. For this purpose, we examined three expression metrics, WAD (weighted average difference), FC (Fisher’s criterion), and Abs_SNR (Absolute value of signal-to-noise ratio) for parametric gene set analysis and evaluated their experimental results.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:18 오전