• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Mechanical Mean Reversion of Leverage Ratios: Analysis of South Korean Firms

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
23 페이지
기타파일
최초등록일 2025.06.20 최종저작일 2016.09
23P 미리보기
Mechanical Mean Reversion of Leverage Ratios: Analysis of South Korean Firms
  • 미리보기

    서지정보

    · 발행기관 : 아시아.유럽미래학회
    · 수록지 정보 : 유라시아연구 / 13권 / 3호 / 103 ~ 125페이지
    · 저자명 : 강용주, 장운욱

    초록

    The traditional view that firms have target leverage ratios has been challenged given that a firm’s leverage ratio could mechanically mean revert whether or not a target leverage level actually exists. Evidence of leverage ratio mechanical mean reversion for U.S. firms has been well documented by Chang and Dasgupta (2009). A replication of the analysis using data on South Korean firms highlight the potential that the mechanical mean reversion of the leverage ratio also exists for South Korean firms, challenging the interpretation of prior research that infers target behavior of firms based on tests using target adjustment models. Although one might be tempted to deduce that South Korean firms follow target behavior based on the fact that the mean reversion parameter obtained from the regression analysis yields statistically significant parameter values, our analysis shows that similar statistically significant values for the mean reversion parameter can also be obtained when simulation samples with non-target random financing is used.
    The stock and financial accounting data for South Korean firms was obtained from FnGuide’s Data Guide database for all firms listed on the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) over a period of 16 years starting from 2000 to 2015. All values were converted into 2010 constant values in order to eliminate the effects of inflation with industry effects being controlled for within the regression analysis using the KSIC (Korea Standard Industrial Classification) codes at the twenty-one single alphabet level. Following the exclusion of non-financial firms, as well as firms with missing book value of assets, an additional requirement that firms have at least five years of continuous and non-missing accounting and stock price information for inclusion was imposed. This particular requirement was imposed to ensure that the leverage ratios in the simulation samples are given an acceptable length of time to evolve differently from the actual leverage ratio when random financing is assumed. Finally, firm-year observations with negative or greater than one book leverage or that have incomplete data were dropped to produce a final unbalanced panel data set that has 20,102 firm-year observations for 1,689 firms.
    Using the obtained panel data, three different simulation samples were generated by assuming different financing behavior and using data from the actual sample. The first simulation sample, denoted by S(p= 0.5, actual deficit), assumes an equal probability of debt issuance and repurchase, that is p is assumed to be 0.50. The second simulation sample obtains p using the actual financing deficit and newly retained earnings in the actual data and is denoted by S(p=empirical frequency, actual deficit). The third simulation sample, denoted by S(p=0.5, random deficit), was generated to remove any potential effects of endogeneity in the actual financing deficit as endogeneity could cause the simulated sample to produce results that are consistent with target behavior. Panel regression of these simulation samples, along with the actual sample, was conducted using a modified version of the leverage model that has leverage ratio as the dependent variable and the lagged leverage ratio as well as various firm-specific variables as the independent variables. The parameter coefficient estimates for the simulation samples were obtained by taking the average of 500 replications of the particular simulation.
    The signs for the coefficients on the lagged leverage ratio and firm-specific variables obtained from the leverage regressions were in the expected directions with respect to the leverage ratio. The significance of the coefficients can be viewed as verification that the leverage ratio for South Korean firms is related to the firm-specific variables selected for the leverage regression analysis. Similarly, the regressions of the simulation samples, also produced statistically significant coefficients for the firm-specific variables that have similar signs as those obtained for the actual sample. The significance of the firm-specific variable coefficients for the simulation samples highlights the fact that the chosen firm characteristics can impact the leverage ratio even when no target behavior is assumed and provides evidence that mechanical mean reversion of leverage ratios is also exhibited by South Korean firms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“유라시아연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:09 오후