• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

The Five-Factor Asset Pricing Model: Applications to the Korean Stock Market

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
26 페이지
기타파일
최초등록일 2025.06.20 최종저작일 2016.06
26P 미리보기
The Five-Factor Asset Pricing Model: Applications to the Korean Stock Market
  • 미리보기

    서지정보

    · 발행기관 : 아시아.유럽미래학회
    · 수록지 정보 : 유라시아연구 / 13권 / 2호 / 155 ~ 180페이지
    · 저자명 : 장운욱, 강용주

    초록

    This paper represents an attempt at empirically assessing the applicability of the Fama and French five-factor model in explaining the cross-sectional variation of stock returns for the South Korean market. The Fama and French (2015) five-factor model is an augmentation of the existing and widely recognized Fama and French (1993) three-factor asset pricing model that incorporates two additional factors, namely the profitability and investment factors. Although the three-factor model has been shown to explain the cross-section of stock return for the U.S. and other developed countries reasonably well, it has not had much success in explaining the cross-section of stock returns for the Korean market. Many researchers have since sought to identify alternative asset pricing models that could serve as the benchmark empirical asset pricing model that would be more applicable for Korea. Along the same lines, the analysis conducted in this paper hopes to test if the revised five-factor model that incorporates the profitability and investment factors is able to alleviate some of the issues the three-factor model has had in explaining the cross-section of stock returns for Korea.
    Monthly returns on common stocks of non-financial firms listed on the Korea Composite Stock Price Index (KOSPI) as well as the relevant accounting information were obtained for the 1992~2013 period. This data was used to obtain the Size (market capitalization), B/M (book-to-market), OP (operating profitability), and Inv (investment) variables, which are subsequently used to obtain the Size-B/M, Size-OP, and Size-Inv portfolios. In order to investigate the Size-B/M, Size-OP, and Size-Inv effects, we construct portfolios by independently sorting firms into four groups for each of the two variables under observation (three 4x4 independently sorted factor portfolios), similar to the way in which Fama and French (1993) constructed their Size-B/M portfolios.
    Following the methodology outlined in Fama and French (2015), the Size-B/M, Size-OP and Size-Inv patterns in average returns were first examined in order to determine if the size, value, profitability and investment effects can be explained. The average excess returns for portfolios formed on Size-B/M, Size-OP, and Size-Inv displayed patterns that we expected them to have, whereby average excess return decreases with Size and investment but increases with B/M and profitability. These results showed that the spread in average excess returns for our sample of Korean stock returns exhibits patterns that are in line with the five factors used in the model.
    In order to estimate the magnitude of the risk premium associated with the size, value, profitability and investment effects, factor mimicking portfolios designed to capture the impact of the various effects were constructed, similar to the methodology used by Fama and French (1993, and 2015). The five constructed mimicking portfolios consists of the MKT, SMB, HML, RMW, and CMA factors whereby MKT represents the market risk premium factor, SMB represents the size factor (Small-Minus-Big), HML represents the value factor (High-Minus-Low), RMW represents the profitability factor (Robust- Minus-Weak), and CMA represents the investment factor (Conservative-Minus-Aggressive). Using these factors, cross-sectional regressions based on the Fama and MacBeth methodology (1973) were conducted on the Size-B/M, Size-OP and Size-Inv value-weighted portfolios in order to determine model performance by looking at the intercepts and relevant slopes for the three (MKT, SMB, and HML) or five factors (MKT, SMB, HML, RMW, and CMA) depending on the model used.
    The results of the Fama-MacBeth regressions conducted using the Size-B/M, Size-OP and Size-Inv test assets for the three-factor and five-factor models show that the only statistically significant factor risk premium for both models regardless of the test asset used is the SMB. Consistent with the results obtained in prior research, the factor risk premium for HML is shown to be insignificant. Although the results could have been driven by the use of a different time period that incorporates the 2007~2008 financial crisis in the analysis, with the exception of the Size-OP test assets, the pricing error () for the cross-sectional regressions shows up as being significantly different from zero, suggesting that both the Fama and French three-and five-factor models should be rejected.
    Comparing between the Fama and French three- and five-factor models, it is evident from the results that the five-factor model fares equally poorly as the three-factor model in explaining the cross-sectional variation of stock returns for the Korean market and the addition of the profitability and investment factors does not help to improve the performance of the model. Hence, there is insufficient empirical evidence that would support the use of either factor models as a benchmark asset pricing model for the Korean stock market. However, the analysis conducted in this paper has its limitations and represents only an initial attempt at assessing the applicability of the Fama and French five-factor model. In order to reach a more definitive conclusion, an expanded and more comprehensive analysis would be required and is left as a suggestion for future research.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“유라시아연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:08 오후