• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

S-JND 모델을 사용한 주관적인 율 제어 알고리즘 기반의 HEVC 부호화 방법 (A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder)

15 페이지
기타파일
최초등록일 2025.06.19 최종저작일 2016.11
15P 미리보기
S-JND 모델을 사용한 주관적인 율 제어 알고리즘 기반의 HEVC 부호화 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 21권 / 6호 / 929 ~ 943페이지
    · 저자명 : 김재련, 안용조, 임웅, 심동규

    초록

    본 논문에서는 인지 화질을 고려하기 위해 S-JND 모델 기반의 율 제어 알고리즘을 제안한다. 제안하는 율 제어 알고리즘은 인간이 가지는 시각 시스템의 특징을 반영하기 위하여 시각적 민감도와 시각적 관심도를 동시에 반영할 수 있도록 제작된 S-JND (Saliency-Just Noticeable Difference) 모델을 사용한다. 율 제어 알고리즘을 통해 비트를 분배하는 과정에서 픽쳐 내에 존재하는 각 CTU (Coding Tree Unit)가 가지는 S-JND threshold를 구한다. 각 CTU의 threshold는 적응적으로 적절한 비트를 분배하는데 사용되고, 따라서 제안하는 비트 분배 모델은 인지 화질을 향상 시킬 수 있다. 제안하는 방법의 성능 검증을 위해서 제안하는 방법을 HM 16.9에 구현하였으며, CTC (Common Test Condition) RA (Random Access), Low-delay B와 Low-delay P의 경우에 Class B와 Class C 영상들에 대해 실험 하였다. 실험 결과, 제안하는 방법은 기존 율 제어 알고리즘 대비 평균 2.3%의 비트율이 감소했고 BD-PSNR은 약 0.07dB 향상이 있었으며 비트 정확도 또한 0.06% 정도 증가하였다. DSCQS (Double Stimulus Continuous Quality Scale) 방법으로 측정한 결과, 제안하는 방법은 기존 방법 대비 0.03 MOS (Mean Opinion Score) 향상을 보였다.

    영어초록

    This paper proposes the rate control algorithm based on the S-JND (Saliency-Just Noticeable Difference) model for considering perceptual visual quality. The proposed rate control algorithm employs the S-JND model to simultaneously reflect human visual sensitivity and human visual attention for considering characteristics of human visual system. During allocating bits for CTU (Coding Tree Unit) level in a rate control, the bit allocation model calculates the S-JND threshold of each CTU in a picture. The threshold of each CTU is used for adaptively allocating a proper number of bits; thus, the proposed bit allocation model can improve perceptual visual quality. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B and Class C under the CTC (Common Test Condition) RA (Random Access), Low-delay B and Low-delay P case. Experimental results show that the proposed method reduces the bit-rate of 2.3%, and improves BD-PSNR of 0.07dB and bit-rate accuracy of 0.06% on average. We achieved MOS improvement of 0.03 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:57 오후