• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상 (Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining)

14 페이지
기타파일
최초등록일 2025.06.19 최종저작일 2009.12
14P 미리보기
LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 15권 / 4호 / 23 ~ 36페이지
    · 저자명 : 박성철, 박준태

    초록

    네트워크 침입 탐지는 데이터마이닝 기법을 활용하면서 지속적으로 발전하여 왔다. 데이터마이닝에 의한 침입 탐지 기법에는 클래스 레이블을 이용한 감독 학습과 클래스 레이블이 없는 비감독 학습 방법이 있다. 본 논문에서는 클래스 레이블이 없는 비감독 학습 방법인 LBG 클러스터링 알고리즘을 이용하여 네트워크 침입 탐지 정확도를 높이는 방법을 연구하였다. 임의의 초기 중심값들로 시작하여 유클리디언 거리 기반에 의해 클러스터링을 수행하는 K-means 방법은 잡음(noisy) 데이터와 이상치(outlier)에 대하여 취약하다는 단점이 있다. 비균일이진 분할에 의한 클러스터링 알고리즘은 초기값 없이 이진분할에 의해 클러스터링을 수행하며 수행 속도가 빠르다. 본 논문에서는 이 두 알고리즘의 장단점을 통합한 EM(Expectation Maximization) 기반의 LBG 알고리즘을 네트워크 침입 탐지에 적용하였으며, KDD 컵 데이터셋을 대상으로 한 실험을 통하여 LBG 알고리즘을 이용함으로써 침입 탐지의 정확도를 높일 수 있음을 보였다.

    영어초록

    Network intrusion detection have been continuously improved by using data mining techniques. There are two kinds of methods in intrusion detection using data mining-supervised learning with class label and unsupervised learning without class label. In this paper we have studied the way of improving network intrusion detection accuracy by using LBG clustering algorithm which is one of unsupervised learning methods. The K-means method, that starts with random initial centroids and performs clustering based on the Euclidean distance, is vulnerable to noisy data and outliers. The non- uniform binary split algorithm uses binary decomposition without assigning initial values, and it is relatively fast. In this paper we applied the EM(Expectation Maximization) based LBG algorithm that incorporates the strength of two algorithms to intrusion detection. The experimental results using the KDD cup dataset showed that the accuracy of detection can be improved by using the LBG algorithm.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 26일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:59 오전