PARTNER
검증된 파트너 제휴사 자료

웹 문서를 위한 개선된 문장경계인식 방법 (Improved Sentence Boundary Detection Method for Web Documents)

9 페이지
기타파일
최초등록일 2025.06.17 최종저작일 2010.06
9P 미리보기
웹 문서를 위한 개선된 문장경계인식 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 37권 / 6호 / 455 ~ 463페이지
    · 저자명 : 이충희, 장명길, 서영훈

    초록

    본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반 하여 개선한 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 종결어미를 대상으로 학습하여 문장경계 인식을 수행하였다. 또한 문장경계인식 성능을 최대화하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다.
    성능 실험은 다양한 문서별 성능 측정을 위해서 구두점이 주로 문장경계로 사용된 문어체 위주의 평가셋1(신문기사와 블로그 문서)과 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서 위주의 평가셋2(웹 사이트의 게시판 글)를 대상으로 성능을 측정하였다. 평가 척도로는 F-measure를 사용하였으며, 기존 연구와 동일하게 구두점만을 문장경계 대상으로 학습한 기본 모델을 만들어서 실험한 결과, 평가셋1에 대해서 96.5%의 성능을 보였지만, 평가셋2에 대해서는 56.7%로 매우 저조한 성능을 보였다. 제안하는 개선 방법은 기본 모델을 웹 문서의 특징을 반영시키도록 자질 및 엔진을 개선시켰고, 최종 모델을 평가셋2로 평가한 결과, 96.3%의 성능을 보여서 39.6%의 성능 향상이 있음을 확인하였다.

    영어초록

    In this paper, we present an approach to sentence boundary detection for web documents that builds on statistical-based methods and uses rule-based correction. The proposed system uses the classification model learned offline using a training set of human-labeled web documents. The web documents have many word-spacing errors and frequently no punctuation mark that indicates the end of sentence boundary. As sentence boundary candidates, the proposed method considers every Ending Eomis as well as punctuation marks. We optimize engine performance by selecting the best feature, the best training data, and the best classification algorithm. For evaluation, we made two test sets; Set1 consisting of articles and blog documents and Set2 of web community documents. We use F-measure to compare results on a large variety of tasks, Detecting only periods as sentence boundary, our basis engine showed 96.5% in Set1 and 56.7% in Set2. We improved our basis engine by adapting features and the boundary search algorithm. For the final evaluation, we compared our adaptation engine with our basis engine in Set2. As a result, the adaptation engine obtained improvements over the basis engine by 39.6%. We proved the effectiveness of the proposed method in sentence boundary detection.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 16일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:34 오후