• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

웹사이트 중복회원 관리 : 소셜 네트워크 분석 접근 (Managing Duplicate Memberships of Websites : An Approach of Social Network Analysis)

17 페이지
기타파일
최초등록일 2025.06.17 최종저작일 2011.03
17P 미리보기
웹사이트 중복회원 관리 : 소셜 네트워크 분석 접근
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 17권 / 1호 / 153 ~ 169페이지
    · 저자명 : 강은영, 곽기영

    초록

    오늘날 기업의 마케팅에 있어 인터넷 환경의 이용은 필수적이며, 좀 더 효율적인 마케팅을 위해 다양한 방법들이 시도되고 있다. 기업들은 온라인마케팅을 통해 다양한 경품이나 포인트 등의 마케팅 비용을 사용하는 것으로 제품이나 서비스를 알려왔다. 특히 웹 2.0의 등장과 함께 기업은 좀 더 적극적으로 고객과 소통하기 위한 노력을 아끼지 않고 있다. 고객들은 회사의 웹사이트에 개인정보를 제공하는 형태로 회원가입을 하여 회사가 제공하는 혜택을 받으면서 제품 광고나 프로모션에 참여하게 된다. 그러나 온라인 마케팅의 운영측면에서 볼 때 현재의 회원관리 시스템은 회원의 모집과 운영에 있어서 효과적이지 못한 문제점이 나타나고 있다. 온라인 환경에서의 고객들은 오프라인 환경에서보다 명확한 자아를 덜 드러내기 때문에 회원가입 과정 중에 일부 악의적인 목적을 가진 고객들이 주변인의 개인정보를 이용하거나 조작하여 중복 아이디를 만들어 활동할 수 있게 된다. 이러한 취약점을 이용하여 중복가입 회원들은 고객들에게 돌아가야 할 경품이나 포인트 등을 가로채어 기업 마케팅 비용의 효율을 떨어뜨리고 있다. 그러나 증가하고 있는 마케팅 비용에 비해 중복회원의 선별 및 이들에 대한 제재를 위한 효과적 방법은 뚜렷하게 제시되지 않고 있다. 따라서 이를 방지하기 위한 체계적인 회원관리 시스템이 요구된다. 본 연구에서는 소셜 네트워크 분석 기법을 이용한 중복회원 식별방법을 제시하고 실제 온라인 고객데이터를 이용하여 그 효과성을 검증한다. 소셜 네트워크는 노드들의 관계를 표현하며, 관계의 유무, 방향 및 강도 등으로 연결 형태를 나타낼 수 있다. 특히 컴포넌트 분석방법은 소셜 네트워크 하위그룹 분석방법으로 네트워크의 내부 그룹을 구분하여 다양한 네트워크 특성을 식별하여 준다. 회원정보 분석에 있어 컴포넌트 분석방법은 전제회원 데이터 내의 의미 있는 정보를 이루고 있는 그룹을 식별하게 된다. 본 연구는 H사의 서로 다른 회원가입 기준을 가진 3개 웹사이트의 회원정보를 사용하여 진행되었다. 제안된 분석방법은 중복회원의 실체를 분석하고 시각화함으로써, 실무적인 측면에서 효율적인 마케팅의 증진을 도울 뿐만 아니라 신뢰성 있는 고객의 의견수렴 및 의사결정에도 도움이 될 것으로 기대된다.

    영어초록

    Today using Internet environment is considered absolutely essential for establishing corporate marketing strategy. Companies have promoted their products and services through various ways of on-line marketing activities such as providing gifts and points to customers in exchange for participating in events, which is based on customers’ membership data. Since companies can use these membership data to enhance their marketing efforts through various data analysis, appropriate website membership management may play an important role in increasing the effectiveness of on-line marketing campaign. Despite the growing interests in proper membership management, however, there have been difficulties in identifying inappropriate members who can weaken on-line marketing effectiveness. In on-line environment, customers tend to not reveal themselves clearly compared to off-line market. Customers who have malicious intent are able to create duplicate IDs by using others’ names illegally or faking login information during joining membership. Since the duplicate members are likely to intercept gifts and points that should be sent to appropriate customers who deserve them, this can result in ineffective marketing efforts. Considering that the number of website members and its related marketing costs are significantly increasing, it is necessary for companies to find efficient ways to screen and exclude unfavorable troublemakers who are duplicate members. With this motivation, this study proposes an approach for managing duplicate membership based on the social network analysis and verifies its effectiveness using membership data gathered from real websites. A social network is a social structure made up of actors called nodes, which are tied by one or more specific types of interdependency. Social networks represent the relationship between the nodes and show the direction and strength of the relationship. Various analytical techniques have been proposed based on the social relationships, such as centrality analysis, structural holes analysis, structural equivalents analysis, and so on. Component analysis, one of the social network analysis techniques, deals with the sub-networks that form meaningful information in the group connection. We propose a method for managing duplicate memberships using component analysis. The procedure is as follows. First step is to identify membership attributes that will be used for analyzing relationship patterns among memberships. Membership attributes include ID, telephone number, address, posting time, IP address, and so on. Second step is to compose social matrices based on the identified membership attributes and aggregate the values of each social matrix into a combined social matrix. The combined social matrix represents how strong pairs of nodes are connected together. When a pair of nodes is strongly connected, we exepct that those nodes are likely to be duplicate memberships. The combined social matrix is transformed into a binary matrix with ‘0’ or ‘1’ of cell values using a relationship criterion that determines whether the membership is duplicate or not. Third step is to conduct a component analysis for the combined social matrix in order to identify component nodes and isolated nodes. Fourth, identify the number of real memberships and calculate the reliability of website membership based on the component analysis results. The proposed procedure was applied to three real websites operated by a pharmaceutical company. The empirical results showed that the proposed method was superior to the traditional database approach using simple address comparison. In conclusion, this study is expected to shed some light on how social network analysis can enhance a reliable on-line marketing performance by efficiently and effectively identifying duplicate memberships of websites.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 21일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:18 오전