PARTNER
검증된 파트너 제휴사 자료

의료 정보 검사코드 표준화를 위한 LOINC 자동 매핑 프레임웍 (An Automatic LOINC Mapping Framework for Standardization of Laboratory Codes in Medical Informatics)

10 페이지
기타파일
최초등록일 2025.06.16 최종저작일 2009.09
10P 미리보기
의료 정보 검사코드 표준화를 위한 LOINC 자동 매핑 프레임웍
  • 미리보기

    서지정보

    · 발행기관 : 한국멀티미디어학회
    · 수록지 정보 : 멀티미디어학회논문지 / 12권 / 8호 / 1172 ~ 1181페이지
    · 저자명 : 안후영, 박영호

    초록

    전자의무기록(Electronic Medical Record, EMR)은 모든 검사 과정이 텍스트 기반의 데이터 형태로 저장되는 의료 분야의 의무기록 시스템을 의미한다. 그러나 국내의 전자의무기록 시스템은 각 의료기관마다 고유한 의료정보검사코드 형태를 이용하여 기록하는 방식으로 정보를 저장하기 때문에 병원 간의 의료 검사 기록 형태들의 공유, 해석, 분석에 많은 문제점들을 가진다. 위의 문제들을 해결하기 위하여 표준화 되어있지 않은 병원들의 검사코드들을 LOINC (Logical Observation Identifiers Names and Code)로 표준화 하려는 연구들이 많다. 현재 까지의 연구들은 로컬 의료정보검사코드를 수동으로 LOINC 로 변환하는 방법이 연구되었다. 또한 대용량 의학 정보들을 다루기에 적절하지 않은 파일 기반에서 코드들을 관리하는 연구들이 이루어져왔다. 기존의 문제점을 해결하기 위하여 본 논문에서는 의료 용어 표준화 알고리즘을 제안하고, 구현하여 해결하였다. 또한, 대표적인 상용시스템이 가졌던 문제점인 검색어를 의사가 직접 생성해야 했던 부분을 LOINC 의 여섯 가지 자동 속성 추출 및 검색어 자동 생성 기능을 구현하여 해결하였다. 또한, 기존의 시스템들이 고려하지 않았던 대용량 데이터의 매핑 부분을 파일 시스템 기반이 아닌 데이터베이스 기반 검색 프레임웍을 구축하였다.

    영어초록

    An electronic medical record (EMR) is the medical system that all the test are recorded as text data. However, domestic EMR systems have various forms of medical records. There are a lot of related works to standardize the laboratory codes as a LOINC (Logical Observation Identifiers Names and Code). However the existing researches resolve the problem manually. The manual process does not work when the size of data is enormous. The paper proposes a novel automatic LOINC mapping algorithm which uses indexing techniques and semantic similarity analysis of medical information.They use file system which is not proper to enormous medical data. We designed and implemented mapping algorithm for standardization laboratory codes in medical informatics compared with the existing researches that are only proposed algorithms. The automatic creation of searching words is being possible. Moreover, the paper implemented medical searching framework based on database system that is considered large size of medical data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“멀티미디어학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 30일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:12 오후