• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

LDAM 손실 함수를 활용한 클래스 불균형 상황에서의 옷차림 T.P.O 추론 모델 학습 (Learning T.P.O Inference Model of Fashion Outfit Using LDAM Loss in Class Imbalance)

9 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2021.03
9P 미리보기
LDAM 손실 함수를 활용한 클래스 불균형 상황에서의 옷차림 T.P.O 추론 모델 학습
  • 미리보기

    서지정보

    · 발행기관 : 한국융합학회
    · 수록지 정보 : 한국융합학회논문지 / 12권 / 3호 / 17 ~ 25페이지
    · 저자명 : 박종혁

    초록

    의복을 착용하는데 있어 목적 상황에 부합하는 옷차림을 구성하는 것은 중요하다. 따라서 인공지능 기반의 다양한 패션 추천 시스템에서 의복 착용의 T.P.O(Time, Place, Occasion)를 고려하고 있다. 하지만 옷차림으로부터 직접 T.P.O를 추론하는 연구는 많지 않은데, 이는 문제 특성 상 다중 레이블 및 클래스 불균형 문제가 발생하여 모델 학습을 어렵게 하기 때문이다. 이에 본 연구에서는 label-distribution-aware margin(LDAM) loss를 도입하여 옷차림의 T.P.O를 추론할 수 있는 모델을 제안한다. 모델의 학습 및 평가를 위한 데이터셋은 패션 쇼핑몰로부터 수집되었고 이를 바탕으로 성능을 측정한 결과, 제안 모델은 비교 모델 대비 모든 T.P.O 클래스에서 균형잡힌 성능을 보여주는 것을 확인할 수 있었다.

    영어초록

    When a person wears clothing, it is important to configure an outfit appropriate to the intended occasion. Therefore, T.P.O(Time, Place, Occasion) of the outfit is considered in various fashion recommendation systems based on artificial intelligence. However, there are few studies that directly infer the T.P.O from outfit images, as the nature of the problem causes multi-label and class imbalance problems, which makes model training challenging. Therefore, in this study, we propose a model that can infer the T.P.O of outfit images by employing a label-distribution-aware margin(LDAM) loss function. Datasets for the model training and evaluation were collected from fashion shopping malls. As a result of measuring performance, it was confirmed that the proposed model showed balanced performance in all T.P.O classes compared to baselines.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국융합학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:30 오후