• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

전기 임피던스 단층촬영법에서 잔류오차 기반의 반복적 조정기법을 이용한 영상 복원 (Image Reconstruction Using Iterative Regularization Scheme Based on Residual Error in Electrical Impedance Tomography)

10 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2014.06
10P 미리보기
전기 임피던스 단층촬영법에서 잔류오차 기반의 반복적 조정기법을 이용한 영상 복원
  • 미리보기

    서지정보

    · 발행기관 : 한국전기전자학회
    · 수록지 정보 : 전기전자학회논문지 / 18권 / 2호 / 272 ~ 281페이지
    · 저자명 : 강숙인, 김경연

    초록

    전기 임피던스 단층촬영법을 이용한 정적 영상 복원에서 대표적으로 사용되고 있는 복원 알고리즘은 modified Newton-Raphson(mNR) 알고리즘으로 수렴 속도 및 추정 정확도 측면에서 비교적 다른 알고리즘들에 비해 좋은 성능을 나타낸다. mNR 알고리즘에서는 측정 전압과 계산 전압과의 차이, 즉 잔류오차를 최소화하도록 목적함수를 설정하고 이를 반복 연산하여 내부의 저항률 분포를 추정한다. 이때 EIT 역문제의 비정치성을 완화시키기 위해 조정방법을 사용하며 조정인자에 따라 서로 다른 영상 복원 성능을 나타낸다. 기존 기법에서는 반복 연산마다 일정한 상수 값의 조정인자를 사용하기 때문에 대상 물체의 내부 상태가 변하거나 측정 잡음 등이 있는 경우 때때로 조정인자에 따라 영상 복원이 수렴되지 않는다. 따라서 본 논문에서는 영상 복원 수렴 및 성능을 개선하기 위하여 잔류오차에 기반하여 반복 연산마다 자동적으로 조정인자를 수정하는 기법을 제안하였다. 시뮬레이션과 실험을 수행하여 제안된 기법의 영상 복원성능을 평가한 결과 비교적 양호한 성능을 나타내었다.

    영어초록

    In electrical impedance tomography (EIT), modified Newton Raphson (mNR) method is widely used inverse algorithm for static image reconstruction due to its convergence speed and estimation accuracy. The unknown conductivity distribution is estimated iteratively by minimizing a cost functional such that the residual error namely the difference in measured and calculated voltages is reduced. Although, mNR method has good estimation performance, EIT inverse problem still suffers from ill-conditioned and ill-posedness nature. To mitigate the ill-posedness, generally, regularization methods are adopted. The inverse solution is highly dependent on the choice of regularization parameter. In most cases, the regularization parameter has a constant value and is chosen based on experience or trail and error approach. In situations, when the internal distribution changes or with high measurement noise, the solution does not get converged with the use of constant regularization parameter. Therefore, in this paper, in order to improve the image reconstruction performance, we propose a new scheme to determine the regularization parameter. The regularization parameter is computed based on residual error and updated every iteration. The proposed scheme is tested with numerical simulations and laboratory phantom experiments. The results show an improved reconstruction performance when using the proposed regularization scheme as compared to constant regularization scheme.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전기전자학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:53 오전