• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

관계형 데이터베이스 기반 구조적학술용어사전(STNet)의 RDF 온톨로지 변환 방식 연구 (A Study on Conversion Methods for Generating RDF Ontology from Structural Terminology Net (STNet) based on RDB)

22 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2015.06
22P 미리보기
관계형 데이터베이스 기반 구조적학술용어사전(STNet)의 RDF 온톨로지 변환 방식 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보관리학회
    · 수록지 정보 : 정보관리학회지 / 32권 / 2호 / 131 ~ 152페이지
    · 저자명 : 고영만, 이승준, 송민선

    초록

    본 연구에서는 R2RML 방식과 Non-R2RML 방식을 각각 적용하여 RDB를 RDF 온톨로지로 변환한 결과를 비교하였다. RDB 기반의 구조적학술용어사전 데이터베이스인 STNet의 데이터를 대상으로, 변환이 완료된 데이터의 규모, 튜플당 변환에 걸리는 시간, 그리고 질의 응답 속도를 측정하였다. 변환 규모의 평가 결과 Non-R2RML 방식이 더 많은 수의 변환을 하였으며, 표현의 풍부성과 추론 가능성 정도를 높이는 변환을 수행한 것으로 나타났다. 튜플당 변환 시간의 경우 Non-R2RML 방식이 미세하지만 더 빠른 것으로 나타났으며, 질의 응답 속도는 두 방식 모두 300회 이상의 질의 횟수부터는 안정적인 성능을 보이면서 유사한 형태의 속도를 보였다. 측정에 대한 종합적 검토 결과 데이터의 변형이 빈번하고 새로운 데이터의 추가나 데이터들 간의 연결관계가 지속적으로 변화하는 STNet과 같은 동적인 RDB에는 Non-R2RML 방식이 적절한 것으로 평가되었다.

    영어초록

    This study described the results of converting RDB to RDF ontology by each of R2RML method and Non-R2RML method. This study measured the size of the converted data, the conversion time per each tuple, and the response speed to queries. The STNet, a structured terminology dictionary based on RDB, was served as a test bed for converting to RDF ontology. As a result of the converted data size, Non-R2RML method appeared to be superior to R2RML method on the number of converted triples, including its expressive diversity. For the conversion time per each tuple, Non-R2RML was a little bit more faster than R2RML, but, for the response speed to queries, both methods showed similar response speed and stable performance since more than 300 numbers of queries. On comprehensive examination it is evaluated that Non-R2RML is the more appropriate to convert the dynamic RDB system, such as the STNet in which new data are steadily accumulated, data transformation very often occurred, and relationships between data continuously changed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보관리학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:58 오전