• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구 (A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings)

20 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2014.12
20P 미리보기
음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국경영정보학회
    · 수록지 정보 : 경영정보학연구 / 16권 / 3호 / 49 ~ 68페이지
    · 저자명 : 김현모, 김민용, 박재홍

    초록

    대다수의 국내외 온라인 디지털 음원 유통 사이트들은 음원 판매 활성화 방책의 일환으로 음원 추천시스템을 가지고 있다. 국외의 경우와 다르게, 우리나라의 시장점유율이 가장 높은 온라인 디지털 음원 유통 사이트 5곳은 독자적인 기준으로 추천 음원을 선정하고 있으며, 추전 음원의 선정 기준 및 절차를 소비자에게 공개하고 있지 않다.
    본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 공정성 여부를 확인하고, 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트에서 어떠한 영향력을 갖는지 확인하는 것을 목적으로 한다. 2012년 11월부터 약 한달 간 온라인 디지털 음원 유통 사이트의 일간 음원차트에 등록되어 있는 1위부터 100위까지의 음원과 추천 음원을 수집하였다. 먼저, 수집된 음원 데이터를 기반으로 음원 추천시스템의 공정성 여부를 실증적인 방법으로 확인하였다. 첫째, 추천 음원의 노출 위치를 분석하였으며 둘째, 추천 음원이 제공되는 서비스 구조를 확인하였다. 셋째, 기획사에 따른 추천 음원 분포를 확인하였다. 더 나아가 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트 내에서 어떠한 영향력을 갖는지 실증적인 분석 방법으로 확인 하였다. 첫째, 음원차트의 동일․비동일 진입 시기에 따라 추천 음원과 미추천 음원의 순위 변화를 비교․분석하였다. 둘째, 모든 사이트에서 동시에 중복 추천된 음원과 단일 추천된 음원의 순위 변화를 비교·분석하였다. 셋째, 추천 받은 음원이 음원차트에 처음으로 진입하는 시기 및 순위를 확인하였다. 넷째, 음원차트 상위권 순위에 분포되어 있는 추천 음원의 비율을 확인하였다.
    본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 현행 및 현상에 대해 실증적으로 분석하여 공정성 문제를 제기하였으며, 음원 추천시스템이 음원차트에 미치는 파급력을 확인하였다는 것에 학술적 의의를 가진다. 또한 온라인 디지털 음원 유통 사이트의 내․외부 이해관계자에게 음원 추천시스템 악용에 대한 경각심을 고취시켜 음원차트의 공정성을 확보하고자 하는 것에 산업적 의의를 가진다.

    영어초록

    These days, consumers have increasingly preferred to digital real-time streamlining and downloading to listen to music because this is convenient and affordable for the consumers. Accordingly, sales of music in compact disk formats have steadily declined. In this regards, online digital music has become a new communication channel to listen musics, where digital files can be delivered over various online networks to people’s computing devices. The majority of online digital music distributors has Music Recommender Systems for sales of digital music on their websites. Music Recommender Systems are parts of information filtering systems that provide the ratings or preferences that users give to music.
    Korean online digital music distributors have Music Recommender Systems. But those online music distributors didn’t provide any rules or clear procedures that recommend music.
    Therefore, we raise important questions as follows: “Is Music Recommender Systems Fair?”, “What is the impact of Music Recommender Systems on online music rankings and sales?”While previous studies have focused on usefulness of Music Recommender Systems, this study investigates not only fairness of Current Music Recommender Systems but also Relationship between Music Recommender Systems and online Music Charts. This study examines these issues based on Bandwagon effect, ranking effect, Slot effect theories.
    For our empirical analysis, we selected the most famous five online digital music distributors in terms of market shares. We found that all recommended music is exposed to the top of ‘daily music charts’ in online digital music distributors’ websites. We collected music ranking data and recommended music data from ‘daily music chart’ during a one month.
    The result shows that online music recommender systems are not fair, since they mainly recommend particular music that supported by a specific music production company. In addition, the recommended music are always exposed to the top of music ranking charts. We also find that recommended music usually appear at the top 20 ranking charts within one or two days. Also, the most music in the top 50 or 100 ranks are the recommended music. Moreover, recommended music usually remain the ranking charts more than one month while non-recommended music often disappear at the ranking charts within two week.
    Our study provides an important implication to online music industry. Because music recommender systems and music ranking charts are closely related, music distributors may improperly use their recommender systems to boost the sales of music that related to their own companies. Therefore, online digital music distributor must clearly announce the rules and procedures about music recommender systems for the better music industry.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“경영정보학연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 11일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:49 오전