PARTNER
검증된 파트너 제휴사 자료

의료 영상을 위한 추정오차 히스토그램 기반가역 워터마킹 알고리즘 (Reversible Watermarking based on Predicted Error Histogram for Medical Imagery)

10 페이지
기타파일
최초등록일 2025.06.13 최종저작일 2015.05
10P 미리보기
의료 영상을 위한 추정오차 히스토그램 기반가역 워터마킹 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 4권 / 5호 / 231 ~ 240페이지
    · 저자명 : 오기태, 장한별, 도엄지, 이해연

    초록

    의료 영상은 원본 콘텐츠의 품질을 유지하는 것이 중요한 동시에 사생활 보호의 요구가 증가함에 따라서 가역 워터마킹 기술에 대한 필요성이 증가하고 있다. 기존의 가역 워터마킹 알고리즘은 의료 영상이 아닌 일반 영상에서는 고용량 고품질을 유지할 수 있으나 영상 전체에 왜곡을 야기한다. 따라서 촬영 대상물의 품질 유지가 중요한 의료 영상에 직접적으로 적용하기에는 부적합하다는 단점을 가진다. 본 논문에서는 의료 영상의 촬영 대상물 영역의 영상 품질을 유지하며, 워터마크를 효율적으로 삽입할 수 있는 가역 워터마킹 알고리즘을 제안한다. 먼저 대상물과 배경 영역을 분할하기 위한 알고리즘을 설계하고, 그 후에 분할된 대상물과 배경에 대해 추정오차 히스토그램에 기반하여 가역 워터마킹 기법을 적용한다. 대상물 영역에는 삽입 레벨을 낮게 설정하고, 배경 영역에 삽입 레벨을 높게 설정함으로써 대상물의화질은 최소한으로 변형을 하며 효율적인 삽입이 가능하도록 하였다. 실험에서 다양한 의료 영상에 대하여 제안한 알고리즘을 기존 추정오차 히스토그램 기반 가역 워터마킹 기술과 삽입 용량 및 영상 품질에 대한 비교를 수행하였고, 그 결과 제안하는 알고리즘이 기존 알고리즘에 비해 높은 영상 품질을 유지하면서 우수한 삽입 용량을 얻을 수 있었다.

    영어초록

    Medical imagery require to protect the privacy with preserving the quality of the original contents. Therefore, reversible watermarking is a solution for this purpose. Previous researches have focused on general imagery and achieved high capacity and high quality. However, they raise a distortion over entire image and hence are not applicable to medical imagery which require to preserve the quality of the objects. In this paper, we propose a novel reversible watermarking for medical imagery, which preserve the quality of the objects and achieves high capacity. First, object and background region is segmented and then predicted error histogram-based reversible watermarking is applied for each region. For the efficient watermark embedding with small distortion in the object region, the embedding level at object region is set as low while the embedding level at background region is set as high. In experiments, the proposed algorithm is compared with the previous predicted error histogram-based algorithm in aspects of embedding capacity and perceptual quality. Results support that the proposed algorithm performs well over the previous algorithm.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:05 오전