• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

랜덤 심볼열에 기반한 확률분포의 반복적 유클리드 거리 추정법 (Recursive Estimation of Euclidean Distance between Probabilities based on A Set of Random Symbols)

6 페이지
기타파일
최초등록일 2025.06.11 최종저작일 2014.08
6P 미리보기
랜덤 심볼열에 기반한 확률분포의 반복적 유클리드 거리 추정법
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 15권 / 4호 / 119 ~ 124페이지
    · 저자명 : 김남용

    초록

    송신 심볼점과 동일한 확률분포 모양을 갖도록 수신단에서 무작위로 발생시킨 N개의 랜덤 샘플에 대한 확률밀도함수와, 시스템 출력샘플들에 대한 확률밀도함수 사이의 ED 를 기반으로 설계된 블라인드 적응 시스템은 수렴에 이르렀는지 평가하거나 최소 ED 평가를 위해 매 샘플시간 마다 ED 값을 계산한다. 그런데 이 ED 값 추정은 블록 데이터 계산방식으로서 계산량이 많다는 문제점을 지니고 있다. 이 논문에서는 과도한 계산량을 줄일 수 있는 방법으로서 현재 샘플 시간의 ED 값과 다음 샘플 시간의 ED 값 사이의 관계와 다음 샘플시간의 ED 값 계산에 현재 계산된 ED 값을 활용할 수 있는 반복적 ED 추정방법을 제안하였다. 기존의 블록 처리 ED 방법은 계산량 을 가지는데 반해 반복적 ED 방법은 계산량 을 가지며, 시뮬레이션 결과에서 두 방식이 정확히 일치하는 추정결과를 산출하였다.

    영어초록

    Blind adaptive systems based on the Euclidean distance (ED) between the distribution function of the output samples and that of a set of random symbols generated at the receiver matching with the distribution function of the transmitted symbol points estimate the ED at each iteration time to examine its convergence state or its minimum ED value. The problem is that this ED estimation obtained by block‐data processing requires a heavy calculation burden. In this paper, a recursive ED estimation method is proposed that reduces the computational complexity by way of utilizing the relationship between the current and previous states of the data‐block. The relationship provides a ground that the currently estimated ED value can be used for the estimation of the next ED without the need for processing the whole new data block. From the simulation results the proposed recursive ED estimation shows the same estimation values as that of the conventional method, and in the aspect of computational burden, the proposed method requires only at each iteration time while the conventional block‐processing method does .

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 04일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:44 오후