• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석 (Steganalysis Using Histogram Characteristic and Statistical Moments of Wavelet Subbands)

9 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2010.11
9P 미리보기
웨이블릿 부대역의 히스토그램 특성과 통계적 모멘트를 이용한 스테그분석
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 - SP / 47권 / 6호 / 57 ~ 65페이지
    · 저자명 : 현승화, 박태희, 김영인, 김유신, 엄일규

    초록

    본 논문은 스테가노그래피 알고리즘에 대한 블라인드 스테그분석 기법을 제안한다. 제안하는 스테그분석기법은 두 가지 형태의 특징 벡터를 추출한다. 첫 번째로, 영상에 정보를 은닉한 후 웨이블릿 부대역의 히스토그램 특성이 변한다는 것을 관찰하고 히스토그램의 위치 변화를 특징으로 이용한다. 두 번째로, 웨이블릿 특성 함수의 통계적 모멘트를 특징으로 이용한다. 첫 번째 형태의 특징은 영상을 3-레벨 웨이블릿 변환하여 9개의 고주파 부대역에서 각각 하나의 특징을 추출하여 총 9개의 특징 벡터 얻는다. 두 번째 형태의 특징은 각 부대역별로 3차 모멘트까지 추출하여 39개의 특징 벡터를 얻는다. 총 48개의 특징 벡터를 교사학습을 이용하여 학습한 후 스테고 영상과 커버 영상을 분류한다. 다층 퍼셉트론 신경망 분류기를 이용하여 두 가지 형태의 특징을 입력으로 하여 삽입 데이터의 존재유무를 판별한다. 제안 방법의 성능을 평가하기 위하여 CorelDraw 데이터 베이스 영상이 사용되었고 LSB 방법과 SS방법, blind SS방법, F5방법으로 다양한 삽입률의 스테고 영상을 생성하여 실험한다. 민감도와 특이도, 에러율, ROC 커브 면적 등을 이용하여 제안 방법이 기존의 스테그분석 방법보다 삽입 정보 유무를 검출하는데 효과적임을 보여준다.

    영어초록

    In this paper, we present a universal steganalysis scheme. The proposed method extract features of two types. First feature set is extracted from histogram characteristic of the wavelet subbands. Second feature set is determined by statistical moments of wavelet characteristic functions. 3-level wavelet decomposition is performed for stego image and cover image using the Haar wavelet basis. We extract one features from 9 high frequency subbands of 12 subbands. The number of second features is 39. We use total 48 features for steganalysis. Multi layer perceptron(MLP) is applied as classifier to distinguish between cover images and stego images. To evaluate the proposed steganalysis method, we use the CorelDraw image database. We test the performance of our proposed steganalysis method over LSB method, spread spectrum data hiding method, blind spread spectrum data hiding method and F5 data hiding method. The proposed method outperforms the previous methods in sensitivity, specificity, error rate and area under ROC curve, etc.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지 - SP”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • EasyAI 무료체험
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 10월 26일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:33 오전