PARTNER
검증된 파트너 제휴사 자료

능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류 (Classification of Crop Cultivation Areas Using Active Learning and Temporal Contextual Information)

13 페이지
기타파일
최초등록일 2025.06.10 최종저작일 2015.09
13P 미리보기
능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 18권 / 3호 / 76 ~ 88페이지
    · 저자명 : 김예슬, 유희영, 박노욱, 이경도

    초록

    이 논문에서는 작물 재배지의 분류를 목적으로 능동 학습과 과거 토지 피복도 기반의 시간 문맥 정보를 결합하는 분류 방법론을 제안하였다. 신뢰성 높은 훈련 자료의 추출을 위하여 능동 학습 기반 반복 분류를 적용하였으며, 과거 토지 피복도의 작물 재배 규칙을 시간 문맥 정보로 정량화하여 능동 학습 기법의 적용시 훈련 자료의 할당과 작물 간 분광학적 혼재 효과 완화에 이용하였다. 제안 분류 방법론의 적용 가능성을 평가하기 위해 미국 Illinois 주의 옥수수와 콩 재배지역의 구분을 목적으로 MODIS 시계열 식생지수 자료와 과거 cropland data layer(CDL) 자료를 이용한 사례연구를 수행하였다. 사례연구 결과, 초기 감독 분류 결과에서 나타났던 옥수수와 콩의 오분류와 기타 작물과 비작물의 오분류 양상이 능동 학습 기반 반복 분류를 통해 완화되었다. 그리고 CDL 자료로부터 추출한 시간 문맥 정보를 추가적으로 결합함으로써 주요 작물에서 나타나는 과추정 양상이 완화되어 가장 우수한 분류 정확도를 나타내었다. 따라서 제안 기법이 양질의 훈련 자료의 확보가 쉽지 않은 작물 재배지의 분류에 유용하게 적용될 수 있음을 확인하였다.

    영어초록

    This paper presents a classification method based on the combination of active learning with temporal contextual information extracted from past land-cover maps for the classification of crop cultivation areas. Iterative classification based on active learning is designed to extract reliable training data and cultivation rules from past land-cover maps are quantified as temporal contextual information to be used for not only assignment of training data but also relaxation of spectral ambiguity. To evaluate the applicability of the classification method proposed in this paper, a case study with MODIS time-series vegetation index data sets and past cropland data layers(CDLs) is carried out for the classification of corn and soybean in Illinois state, USA. Iterative classification based on active learning could reduce misclassification both between corn and soybean and between other crops and non crops. The combination of temporal contextual information also reduced the over-estimation results in major crops and led to the best classification accuracy. Thus, these case study results confirm that the proposed classification method can be effectively applied for crop cultivation areas where it is not easy to collect the sufficient number of reliable training data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 27일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:13 오전