• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템 (An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining)

11 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2021.04
11P 미리보기
베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷정보학회
    · 수록지 정보 : 인터넷정보학회논문지 / 22권 / 2호 / 77 ~ 87페이지
    · 저자명 : 윤지영, 신건윤, 김동욱, 김상수, 한명묵

    초록

    인터넷과 개인용 컴퓨터가 발달하면서 다양하고 복잡한 공격들이 등장하기 시작했다. 공격들이 복잡해짐에 따라 기존에 사용하던시그니처 기반의 탐지 방식으로 탐지가 어려워졌으며 이를 해결하기 위해 행위기반의 탐지를 위한 로그 이상탐지에 대한 연구가 주목 받기 시작했다. 최근 로그 이상탐지에 대한 연구는 딥러닝을 활용해 순서를 학습하는 방식으로 이루어지고 있으며 좋은 성능을보여준다. 하지만 좋은 성능에도 불구하고 판단에 대한 근거를 제공하지 못한다는 한계점을 지닌다. 판단에 대한 근거 및 설명을 제공하지 못할 경우, 데이터가 오염되거나 모델 자체에 결함이 발생해도 이를 발견하기 어렵다는 문제점을 지닌다. 결론적으로 사용자의 신뢰성을 잃게 된다. 이를 해결하기 위해 본 연구에서는 설명가능한 로그 이상탐지 시스템을 제안한다. 본 연구는 가장 먼저 로그파싱을 진행해 로그 전처리를 수행한다. 이후 전처리된 로그들을 이용해 베이지안 확률 기반 순차 규칙추출을 진행한다. 결과적으로“If 조건 then 결과, 사후확률( θ)” 형식의 규칙집합을 추출하며 이와 매칭될 경우 정상, 매칭되지 않을 경우, 이상행위로 판단하게 된다. 실험으로는 HDFS 로그 데이터셋을 활용했으며, 그 결과 F1score 92.7%의 성능을 나타내었다.

    영어초록

    With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“인터넷정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 05일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:32 오전