• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법 (Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading)

8 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2011.10
8P 미리보기
변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법
  • 미리보기

    서지정보

    · 발행기관 : 대한기계학회
    · 수록지 정보 : 대한기계학회논문집 A / 35권 / 10호 / 1299 ~ 1306페이지
    · 저자명 : 임상혁, 안다운, 최주호

    초록

    본 연구에서는 측정된 균열 데이터를 토대로 변동하중 하에서의 균열성장모델 변수들을 베이지안 모델변수 추정 방법을 통해서 확률적인 분포로 구하는 방법을 제시하였다. 모델변수의 확률분포를 구하기 위해 Markov Chain Monte Carlo (MCMC) 샘플링 방법을 이용하였다. 변동하중 하에서는 균열성장 모델이 더욱 복잡해 짐에 따라 기존의 MCMC 기법으로는 확률분포를 잘 구하지 못하므로 주변확률밀도분포를 제안함수로 사용하는 MCMC 기법을 새롭게 제안하였다. 모델변수의 추정을 위해 여러 크기의 일정 진폭 하중 하에서 시편시험을 수행하여 얻은 균열성장 데이터를 이용하였다. 추정된 변수들을 사용하여 변동하중 하에서의 시편에 대해 균열성장 예측을 수행하였고, 이를 실제 시험 데이터를 통해서 검증하였다.

    영어초록

    In this study, crack-growth model parameters subjected to variable amplitude loading are estimated in the form of a probability distribution using the method of Bayesian parameter estimation. Huang's model is employed to describe the retardation and acceleration of the crack growth during the loadings. The Markov Chain Monte Carlo (MCMC) method is used to obtain samples of the parameters following the probability distribution. As the conventional MCMC method often fails to converge to the equilibrium distribution because of the increased complexity of the model under variable amplitude loading, an improved MCMC method is introduced to overcome this shortcoming, in which a marginal (PDF) is employed as a proposal density function. The model parameters are estimated on the basis of the data from several test specimens subjected to constant amplitude loading. The prediction is then made under variable amplitude loading for the same specimen, and validated by the ground-truth data using the estimated parameters.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한기계학회논문집 A”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:15 오후