PARTNER
검증된 파트너 제휴사 자료

베이지안 분석에서 사전분포의 이해와 적용 (Understanding and applying prior distributions in Bayesian analyses)

30 페이지
기타파일
최초등록일 2025.06.04 최종저작일 2021.12
30P 미리보기
베이지안 분석에서 사전분포의 이해와 적용
  • 미리보기

    서지정보

    · 발행기관 : 한국심리학회
    · 수록지 정보 : 한국심리학회지:일반 / 40권 / 4호 / 567 ~ 596페이지
    · 저자명 : 이지윤, 김수영

    초록

    최근 베이지안 추정 방법이 사회과학 분야에서 많은 관심을 받고 있다. 베이지안 방법에는 연구자의 배경지식을 추정에 반영할 수 있는 사전분포라는 특별한 요소가 있으며, 이를 어떻게 지정하는지가 추정 전반에 영향을 미친다. 사전분포는 베이지안 분석에서 가장 중요한 요소임에도 불구하고, 사전분포를 이해하고 적절히 지정하기 위해 참고할 수 있는 방법론적 연구는 부족한 상황이다. 본 연구는 사전분포의 중요성과 사전분포 지정에 대한 전반적인 내용을 다룬다. 먼저, 연구자가 사전분포를 직접 지정하지 않는, 즉 프로그램이 제공하는 디폴트 사전분포 방법을 알아본다. 자주 사용되는 프로그램들의 디폴트 사전분포를 알아봄과 더불어 디폴트 사전분포의 알려진 문제점도 확인한다. 다음으로는 연구자가 사전분포를 직접 지정하는 방법에 대해 다룬다. 직접 지정할 수 있는 사전분포에는 무정보 사전분포와 정보 사전분포가 있으며, 어떤 사전분포를 이용할지는 모수에 대한 사전 정보의 유무에 따라 결정된다. 무정보 사전분포의 필요성과 이를 지정할 때 참고할 수 있도록 제안된 방법을 다루고, 정보 사전분포를 지정할 때 참고할 수 있는 연구들을 제공하며, 여러 연구의 기준을 종합해 연구자의 정보성 선택에 참고할 수 있는 기준을 탐색한다. 이후 본문에서 논의한 방법들을 적용한 자료 예시를 통해 실질적 도움을 제공하고자 하였으며, 마지막으로 본 연구의 의의와 한계에 대해 논의한다.

    영어초록

    The Bayesian estimation method has recently received a lot of attention in the social sciences. The Bayesian method has a special factor of prior distribution that can reflect researchers’ background knowledge in the estimation process. The specification of the prior distribution affects the overall estimation. Despite prior distribution being the most important factor in Bayesian analysis, there is a lack of methodological research for understanding and appropriately specifying the prior distribution. Therefore, the present study tries to help researchers to apply the prior distribution to their estimation by addressing the importance of the prior distribution and the overall content of the prior specification. First, we explore the method that researchers do not directly specify the prior distribution. This method means selecting the default prior distribution automatically provided by the program, and if you want to use this option, you must know exactly what kind of the default prior distribution is actually provided. For this, we discuss the default priors of frequently used programs, as well as the known problem of the default priors. Second, we address the method that researchers do specify the prior distribution by themseleves. The prior distributions that can be directly specified include noninformative prior distributions and informative prior distributions. Which prior distribution to use is determined by the presence of prior information on parameters. This study deals with the necessity of noninformative prior distributions and the proposed method when specifying them, provides studies that can be referenced when specifying informative prior distributions, and explores criteria that can be referenced for the select of informativeness by synthesizing the criteria across many studies. We provide practical help through data examples applying the methods discussed in the text, and finally discuss the significance and limitations of the present study.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국심리학회지:일반”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:50 오전