• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

위험 등급 분류를 통한 호우피해 예측함수 개발 (Development of a Heavy Rain Damage Prediction Function by Risk Classification)

10 페이지
기타파일
최초등록일 2025.06.03 최종저작일 2018.12
10P 미리보기
위험 등급 분류를 통한 호우피해 예측함수 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국방재학회
    · 수록지 정보 : 한국방재학회논문집 / 18권 / 7호 / 503 ~ 512페이지
    · 저자명 : 김동현, 최창현, 김종성, 주홍준, 김정욱, 김형수

    초록

    본 연구에서는 한강 권역을 대상으로 기 투자 요소 및 사회⋅경제적 요소 등을 활용하여 Red Zone, Orange Zone, Yellow Zone, Green Zone으로 위험 등급을 분류하였고, 위험 등급을 고려한 호우피해 예측함수를 개발하였다. 호우피해 예측함수를 개발하기 위하여 종속변수로는 호우로 인한 총 피해액, 독립변수로는 수문기상 자료, 기 투자 요소 그리고 사회⋅경제적 요소 등을 활용하여 구축하였다. 통계적 예측 기법으로는 다중회귀 모형, 인공신경망 모형을 활용하였다. 예측력을 평가하기 위하여 2005년부터 2012년까지는 학습구간, 2013년부터 2016년까지는 평가구간으로 구분하였다. 예측력 평가 결과 NRMSE는 약 12%~13%로 나타났으며, 위험등급을 고려한 인공신경망 모형에서 가장 높은 예측력을 보였다. 본 연구의 결과를 바탕으로 각기 다른 시군구별 특성을 파악하고 사전 대비차원에서의 재난관리를 실시한다면, 자연재해의 피해를 경감 시킬 수 있을 것으로 판단된다.

    영어초록

    In this study, risks were classified into Red Zone, Orange Zone, Yellow Zone, and Green Zone using investment factors and socioeconomic factors. We developed a heavy rain damage prediction function considering the risk class. In order to develop the heavy rain damage prediction function, the total amount of damage due to heavy rain was used as the dependent variable, and the hydrological weather data, investment factors, and socioeconomic factors were used as the independent variables. A multiple regression model and artificial neural network model were used as the statistical prediction methods. In order to evaluate the predictive power, we set the learning period as 2005 to 2012 and the test period as 2013 to 2016. The NRMSE was estimated to be about 12%-13%, and the predictive power was the highest in the artificial neural network model considering the risk class. Based on the results of this study, if we identify the characteristics of different cities and districts and conduct disaster management in advance, then is possible to reduce the damage caused by natural disasters.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방재학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:18 오전