• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

이미지 생성을 위해 노이즈를 이용한 GAN 시스템 (GAN System Using Noise for Image Generation)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.06.03 최종저작일 2020.06
6P 미리보기
이미지 생성을 위해 노이즈를 이용한 GAN 시스템
  • 미리보기

    서지정보

    · 발행기관 : 한국정보통신학회
    · 수록지 정보 : 한국정보통신학회논문지 / 24권 / 6호 / 700 ~ 705페이지
    · 저자명 : 배상중, 김민규, 정회경

    초록

    생성적 적대 신경망(GAN, Generative Adversarial Network)은 두 개의 신경망을 대립하여 이미지를 생성하는 방법이다. 이미지를 생성할 때 랜덤으로 생성한 노이즈를 재배열하여 이미지를 생성하는데 이러한 방법으로 생성된 이미지는 노이즈에 따라 생성이 잘 이루어지지 않고, 이미지의 픽셀이 적은 경우 제대로 된 이미지를 생성하기 어렵다는 문제점이 발생할 수 있다. 또한 데이터 분류에서 데이터가 쌓이는 속도와 크기가 증가되는데 이들을 라벨링하는 데는 많은 어려움이 있다. 본 논문에서는 이를 해결하기 위해 랜덤으로 생성하던 노이즈에 실제 데이터를 사용하여 노이즈를 생성하고 이를 기반으로 이미지를 생성하는 기법을 제안한다. 제안하는 시스템은 기존에 있는 이미지를 기반으로 하는 이미지를 생성하는 것이므로 좀 더 자연스러운 이미지의 생성이 가능하다는 것을 확인하였고 이를 학습에 이용할 경우 기존의 생성적 적대 신경망을 사용한 방법보다 더 높은 적중률을 보임을 확인하였다.

    영어초록

    Generative adversarial networks are methods of generating images by opposing two neural networks. When generating the image, randomly generated noise is rearranged to generate the image. The image generated by this method is not generated well depending on the noise, and it is difficult to generate a proper image when the number of pixels of the image is small In addition, the speed and size of data accumulation in data classification increases, and there are many difficulties in labeling them. In this paper, to solve this problem, we propose a technique to generate noise based on random noise using real data. Since the proposed system generates an image based on the existing image, it is confirmed that it is possible to generate a more natural image, and if it is used for learning, it shows a higher hit rate than the existing method using the hostile neural network respectively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보통신학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 21일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:16 오전