• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례 (Role of unstructured data on water surface elevation prediction with LSTM: case study on Jamsu Bridge, Korea)

10 페이지
기타파일
최초등록일 2025.06.03 최종저작일 2021.12
10P 미리보기
LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 54권 / 1195 ~ 1204페이지
    · 저자명 : 이승연, 유형주, 이승오

    초록

    최근 이상기후로 인한 국지성호우가 잦아져 하천변 사회기반시설을 포함한 인적·물적 피해가 급증하고 있다. 본 연구에서는 해당 시설들의 침수 피해를 예측·방지하고자 기계학습 중 시계열자료에 특화된 LSTM(Long Short- term Memory)기법을 활용하여 수위 예측 알고리즘을 개발하였다. 연구대상지는 잠수교로 연구기간은 총 6년(2015년~2020년)의 6, 7, 8월로 3시간 후의 잠수교 수위를 예측하였다. 입력자료(Input data)는 잠수교 수위(EL.m), 팔당댐 방류량(m3/s), 강화대교 조위(cm), 서울시 트윗의 개수로 기존 연구에 주로 사용된 정형자료뿐만 아니라 워드클라우드를 통해 구축된 비정형자료도 함께 사용하여 상호 보완형 자료를 구축하고, 비정형자료 활용 유무의 비교·분석을 통해 비정형자료의 역할도 제시하였다. 잠수교의 수위 예측 시 상호 보완형의 자료가 정형자료만을 사용한 경우에 비해 예측 정확도가 향상하였는 데, 이는 인명 피해를 감소시킬 수 있는 보수적인 예/경보가 가능함을 알 수 있었다. 본 연구에서는 하천변 사회기반시설의 이용자 안전 및 편의 제공에 상호 보완형 자료의 사용이 보다 효과적이라 판단하였다. 향후에는 비정형자료의 종류를 추가하거나 입력자료의 세밀한 전처리를 통하여 더욱 정확한 수위 예측을 기대해본다.

    영어초록

    Recently, local torrential rain have become more frequent and severe due to abnormal climate conditions, causing a surge in human and properties damage including infrastructures along the river. In this study, water surface elevation prediction algorithm was developed using the LSTM (Long Short-term Memory) technique specialized for time series data among Machine Learning to estimate and prevent flooding of the facilities. The study area is Jamsu Bridge, the study period is 6 years (2015~2020) of June, July and August and the water surface elevation of the Jamsu Bridge after 3 hours was predicted. Input data set is composed of the water surface elevation of Jamsu Bridge (EL.m), the amount of discharge from Paldang Dam (m3/s), the tide level of Ganghwa Bridge (cm) and the number of tweets in Seoul. Complementary data were constructed by using not only structured data mainly used in precedent research but also unstructured data constructed through wordcloud, and the role of unstructured data was presented through comparison and analysis of whether or not unstructured data was used. When predicting the water surface elevation of the Jamsu Bridge, the accuracy of prediction was improved and realized that complementary data could be conservative alerts to reduce casualties. In this study, it was concluded that the use of complementary data was relatively effective in providing the user’s safety and convenience of riverside infrastructure. In the future, more accurate water surface elevation prediction would be expected through the addition of types of unstructured data or detailed pre-processing of input data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:07 오전