PARTNER
검증된 파트너 제휴사 자료

조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측 (Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific.)

11 페이지
기타파일
최초등록일 2025.06.02 최종저작일 2010.12
11P 미리보기
조건(암, 정상)에 따라 특이적 관계를 나타내는 유전자 쌍으로 구성된 유전자 모듈을 이용한 독립샘플의 클래스예측
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 15권 / 12호 / 197 ~ 207페이지
    · 저자명 : 정현이, 윤영미

    초록

    대용량(High-throughput) 형태로 얻어진 cDNA 마이크로어레이 데이터에 다양한 데이터 마이닝 기법을 적용하면 서로 다른 조직에서 추출한 유전자의 발현정도를 비교할 수 있고 정상세포와 암세포에서 발현량의 차이를 보이는 DEG(Differently Expression Gene) 유전자를 추출할 수 있다. 이들을 이용하여 병을 진단할 수 있을 뿐만 아니라, 암의 진행 단계(Cancer Stage)에 따른 치료 방법을 결정할 수 있다. 마이크로어레이를 기반으로 한 대부분의 암 분류자는 기계학습 기법을 이용하여 암 관련 유전자를 추출하여, 이들 유전자를 총체적으로 이용하여 독립샘플의 클래스(암, 정상)를 판정한다. 하지만 유전자의 발현량의 차이뿐만 아니라 유전자와 유전자의 상관관계의 변화가 질병 진단에 활용될 수 있다. 대부분의 질병은 단독 유전자의 변이에 의한 것이 아니라 유전자의 모듈로 이루어진 유전자조절네트워크의 변이에 의한 것이기 때문이다. 본 논문에서는 조건에 따라 특이적 관계를 나타내는 유전자 쌍을 식별하여, 이들 유전자 쌍을 이용한 유전자 분류 모듈을 생성한다. 분류 모듈을 이용한 암 분류 방법이 기존의 암 분류 방법보다 높은 정확도로 암과 정상 샘플을 분류함을 보여주고 있다. 분류 모듈을 구성하는 유전자의 수가 상대적으로 적으므로 임상키트로의 개발도 고려할 수 있다. 향후 분류 모듈에 속하는 유전자의 기능적 검증을, GO(Gene Ontology)를 활용함 으로서, 밝혀지지 않은 새로운 암 관련 유전자를 식별하고, 분류 모듈을 확대하여 암 특이적 유전자조절네트워크 구성에 활용할 계획이다.

    영어초록

    Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:04 오전