• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구 (Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters)

11 페이지
기타파일
최초등록일 2025.06.01 최종저작일 2020.12
11P 미리보기
실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 5권 / 2호 / 17 ~ 27페이지
    · 저자명 : 송상화, 신광섭, 이재훈, 정윤재, 이재승, 윤석만

    초록

    지역난방 시스템은 서비스 지역 내 열 수요처들을 네트워크로 연결하여 중앙의 저비용 고효율 열 생산설비를 통해 열을 공급하는 에너지 시스템이다. 효율적인 열 공급 시시스템 운영을 위하여 지역 내 열 수요를 정확하게 예측하고 이를 바탕으로 열 생산 계획을 최적화하는 것이 중요하다. 본 연구에서는 지역 내 열수요처별 열 사용량 패턴에 대한 빅데이터 정보로 기계실별 실시간 열량계 정보를 반영한 열수요 예측 모형을 제시하였다. 기존에도 열 수요예측에 활용되던 지역 전체 열수요 실적 합계와 함께 수요처별로 설치되어 있는 열량계로부터 실시간으로 수집한 개별 열수요 실적을 예측모형에 반영함으로써 열 수요처별로 상이한 열사용 패턴을 반영한 열 수요 예측이 가능할 것으로 기대된다. 지역난방 기업의 실제 열수요 실적을 바탕으로 열수요 예측 정확도를 측정한 결과 계절에 상관없이 기본 모형 대비 열량계 빅데이터를 반영할 경우 정확도가 올라가는 것으로 분석되었으며, 향후 열수요처별 다양한 형태의 데이터를 추가로 반영함으로써열 수요 예측 정확도 향상이 가능할 것으로 예츢된다.

    영어초록

    District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 30일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:19 오전