PARTNER
검증된 파트너 제휴사 자료

인공지능 모델을 활용한 실시간 수질평가지수 예측 (Real-time WQI prediction using AI-based models)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
15 페이지
기타파일
최초등록일 2025.06.01 최종저작일 2023.02
15P 미리보기
인공지능 모델을 활용한 실시간 수질평가지수 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국해양환경·에너지학회
    · 수록지 정보 : 한국해양환경•에너지학회지 / 26권 / 1호 / 66 ~ 80페이지
    · 저자명 : 김수빈, 김경태, 이재성

    초록

    현재 해양수산부에서 연안 오염우심해역의 해양환경을 상시 측정하기 위해 해양수질자동측정망 자료를 제공하고 있다. 아울러 우리나라는 해양환경을 직관적으로 평가하기 위하여 수질평가지수(water quality index, WQI)를 사용하고 있다. 하지만, 해양환경측정망 자료는 WQI를 제공하고 있으나 해양수질자동측정망 자료는 WQI를 계산하기 위한 수질 자료가 충분하지 않다. 이 연구는 실시간으로 수질 변화를 평가하기 위해서 해양환경측정망 자료를 학습한 인공지능(artificial intelligence, AI) 모델(model)을 이용하여 보정(calibration)된 수질자동측정망 자료의 WQI를 예측하고자 한다. 특별관리해역의 수질자동측정망 자료 중 결측치(missing value)가 비교적 적은 부산수영, 광양적량, 마산삼귀, 인천송도, 시화조력, 시화반월 측정소 자료를 활용하였다. 보정을 위해 수질자동측정소와 가장 인접한 해역별 정점의 해양환경즉정망 자료를 활용하였다. Cook의 거리(Cook’s distance) 비교로 이상치를 제거하고 선형회귀(linear regression)를 통해 해양환경측정망과 동일한 조사 시간의 수질자동측정망 자료 중 결정계수(coefficient of determination)값이 큰 변수의 자료만을 보정하였다. 해양환경측정망 자료를 훈련자료(training datasets)로 사용하고 보정된 수질자동측정망 자료를 검증자료(test datasets)를 사용하여 다양한 알고리즘(algorithm)(MLR, SVR, XGBR, ETR, ANN, ELM, NFN, ANFIS, GANN)으로 학습한 모델의 예측 성능을 평균제곱근오차(root mean square error, RMSE), 평균절대오차(mean absolute error, MAE)로 평가하였다. 평가 결과 각 해역별로 최적 알고리즘과 예측성능은 상이하였고 수질이 나쁜 경우(WQI가 클수록) 예측성능이 나쁘고 일관성이 부족하였다. 자료와 보정의 품질을 향상시킨다면 실시간으로 수질자동측정망 자료의 WQI를 정확히 예측하여 수질오염 경보와 지속가능한 해양환경관리가 가능할 것이다.

    영어초록

    The Ministry of Oceans and Fisheries is providing real-time data from the Real-time Water Quality Moni-toring System(RWQMS) to monitor the marine environment in areas of concern for pollution. The Korean government uses the Water Quality Index(WQI) to evaluate the state of the marine environment, but the data from the RWQMS is insufficient to calculate the WQI. This study aims to predict the WQI by using an Artificial Intelligence(AI) model trained on data from the Marine Environment Monitoring Sys-tem(MEMS) to track changes in water quality in real-time. The study focuses on data from six specific RWQMS stations(Busan Suyeong, Gwangyang Jeongyang, Masan Samgwi, Incheon Songdo, Sihwa TPP, and Sihwa Banweol) with relatively low levels of missing data. The data from nearby MEMS stations was used for calibration. Outliers were removed and the RWQMS data was calibrated through linear regression, considering only data with high coefficients of determination(R2). The predictive performance of the model, trained using various algorithms(MLR, SVR, XGBR, ETR, ANN, ELM, NFN, ANFIS, and GANN), was evaluated using Root Mean Square Error(RMSE) and Mean Absolute Error(MAE). The results showed that the optimal algorithm and predictive performance varied by location and poor water quality resulted in poor predictive performance and consistency. Better data quality and calibration improve re-al-time WQI predictions in the RWQMS, enabling early warnings for water pollution and promoting sus-tainable management of the marine environment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국해양환경•에너지학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 29일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:09 오후