PARTNER
검증된 파트너 제휴사 자료

시계열 예측을 위한 스타일 기반 트랜스포머 (Style-Based Transformer for Time Series Forecasting)

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.05.30 최종저작일 2021.12
8P 미리보기
시계열 예측을 위한 스타일 기반 트랜스포머
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 10권 / 12호 / 579 ~ 586페이지
    · 저자명 : 김동건, 김광수

    초록

    시계열 예측은 과거 시점의 정보를 토대로 미래 시점의 정보를 예측하는 것을 말한다. 향후 시점의 정보를 정확하게 예측하는 것은 다양한분야 전략 수립, 정책 결정 등을 위해 활용되기 때문에 매우 중요하다. 최근에는 트랜스포머 모델이 시계열 예측 모델로서 주로 연구되고 있다.
    그러나 기존의 트랜스포머의 모델은 예측 순차를 출력할 때 출력 결과를 다시 입력하는 자가회귀 구조로 되어 있다는 한계점이 있다. 이 한계점은멀리 떨어진 시점을 예측할 때 정확도가 떨어진다는 문제점을 초래한다. 본 논문에서는 이러한 문제점을 개선하고 더 정확한 시계열 예측을 위해스타일 변환 기법에 착안한 순차 디코딩 모델을 제안한다. 제안하는 모델은 트랜스포머-인코더에서 과거 정보의 특성을 추출하고, 이를 스타일-기반디코더에 반영하여 예측 시계열을 생성하는 구조로 되어 있다. 이 구조는 자가회귀 방식의 기존의 트랜스포머의 디코더 구조와 다르게, 예측 순차를한꺼번에 출력하기 때문에 더 먼 시점의 정보를 좀 더 정확히 예측할 수 있다는 장점이 있다. 서로 다른 데이터 특성을 가지는 다양한 시계열데이터셋으로 예측 실험을 진행한 결과, 본 논문에서 제시한 모델이 기존의 다른 시계열 예측 모델보다 예측 정확도가 우수하다는 것을 보인다.

    영어초록

    Time series forecasting refers to predicting future time information based on past time information. Accurately predicting futureinformation is crucial because it is used for establishing strategies or making policy decisions in various fields. Recently, a transformermodel has been mainly studied for a time series prediction model. However, the existing transformer model has a limitation in that ithas an auto-regressive structure in which the output result is input again when the prediction sequence is output. This limitation causesa problem in that accuracy is lowered when predicting a distant time point. This paper proposes a sequential decoding model focusingon the style transformation technique to handle these problems and make more precise time series forecasting. The proposed modelhas a structure in which the contents of past data are extracted from the transformer-encoder and reflected in the style-based decoderto generate the predictive sequence. Unlike the decoder structure of the conventional auto-regressive transformer, this structure has theadvantage of being able to more accurately predict information from a distant view because the prediction sequence is output all atonce. As a result of conducting a prediction experiment with various time series datasets with different data characteristics, it was shownthat the model presented in this paper has better prediction accuracy than other existing time series prediction models.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:01 오후