• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

계층적 CNN 구조를 이용한 스테가노그래피 식별 (Identification of Steganographic Methods Using a Hierarchical CNN Structure)

7 페이지
기타파일
최초등록일 2025.05.29 최종저작일 2019.12
7P 미리보기
계층적 CNN 구조를 이용한 스테가노그래피 식별
  • 미리보기

    서지정보

    · 발행기관 : 한국융합신호처리학회
    · 수록지 정보 : 융합신호처리학회 논문지 / 20권 / 4호 / 205 ~ 211페이지
    · 저자명 : 강상훈, 박한훈, 박종일, 김산해

    초록

    스테그아날리시스(steganalysis)는 스테가노그래피(steganography)에 의해 숨겨진 데이터를 감지하고 복구하기 위한 기법이다. 스테그아날리시스 방법은 데이터 삽입 시 발생하는 시각적, 통계적 변화를 분석하여 숨겨진 데이터를 찾는다. 숨겨진 데이터를 복원하기 위해서는 어떤 스테가노그래피 방법에 의해 데이터가 숨겨졌는지를 알아야 한다. 그러므로 본 논문은 다층 분류를 통해 입력 영상에 적용된 스테가노그래피 방법을 식별하는 계층적 CNN 구조를 제안한다. 이를 위해 4개의 기본 CNN을 각각 입력 영상에 스테가노그래피 방법이 적용되었는지 여부나 서로 다른 두 스테가노그래피 방법 중에 어떤 방법이 적용되었는지를 이진 판별하도록 학습시켰으며, 학습된 CNN을 계층적으로 연결하였다. 실험 결과를 통해 제안된 계층적 CNN 구조는 4개의 서로 다른 스테가노그래피 방법인 LSB(Least Significant Bit Substitution), PVD(Pixel Value Difference), WOW(Wavelet Obtained Weights), UNIWARD(Universal Wavelet Relative Distortion)을 79%의 정확도로 식별할 수 있음을 확인하였다.

    영어초록

    Steganalysis is a technique that aims to detect and recover data hidden by steganography. Steganalytic methods detect hidden data by analyzing visual and statistical distortions caused during data embedding. However, for recovering the hidden data, they need to know which steganographic methods the hidden data has been embedded by. Therefore, we propose a hierarchical convolutional neural network (CNN) structure that identifies a steganographic method applied to an input image through multi-level classification. We trained four base CNNs (each is a binary classifier that determines whether or not a steganographic method has been applied to an input image or which of two different steganographic methods has been applied to an input image) and connected them hierarchically. Experimental results demonstrate that the proposed hierarchical CNN structure can identify four different steganographic methods (LSB, PVD, WOW, and UNIWARD) with an accuracy of 79%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합신호처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 31일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:34 오전