PARTNER
검증된 파트너 제휴사 자료

송ㆍ수신 이메일의 학습을 통해 긍정 오류를 줄이는 개선된 베이지안 필터링 기법 (Improved Bayesian Filtering mechanism to reduce the false positives by training both Sending and Receiving e-mails)

10 페이지
기타파일
최초등록일 2025.05.27 최종저작일 2008.04
10P 미리보기
송ㆍ수신 이메일의 학습을 통해 긍정 오류를 줄이는 개선된 베이지안 필터링 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 18권 / 2호 / 129 ~ 138페이지
    · 저자명 : 김두환, 유종덕, 정수환

    초록

    본 논문에서는 기존의 베이지안 필터링 방식에서 발생하는 긍정 오류를 줄이기 위한 개선된 베이지안 필터링 기법을 제안한다. 기존의 베이지안 필터링 방식에서는 이메일 서버에서 학습한 DB를 일괄적으로 개별 사용자들에게 적용한다. 또한 수신 이메일 위주의 학습 방식은 양질의 정상 DB를 학습하는데 어려움을 준다. 이러한 문제로 인해 기존의 베이지안 필터링 기법에서는 정상 이메일을 스팸 이메일로 판단하는 긍정 오류가 발생한다. 제안 기법에서는 사용자의 송신 이메일을 양질의 정상 DB 정보로 판단하여 베이지안 정상 DB에 자동으로 학습한다. 뿐만 아니라 개별 사용자에게 독립적인 베이지안 DB를 제공하여 사용자 개개인의 이메일 송·수신 특성을 고려한 필터링 서비스를 제공한다. 제안 기법은 기존의 베이지안 필터링 기법보다 필터링의 정확성에서 평균 3.13 % 향상된 결과를 보인다.

    영어초록

    In this paper, we propose an improved Bayesian Filtering mechanism to reduce the False Positives that occurs in the existing Bayesian Filtering mechanism. In the existing Bayesian Filtering mechanism, the same Bayesian Filtering DB trained at the e-mail server is applied to each e-mail user. Also, the training method using receiving e-mails only could not provide the high quality of ham DB. Due to these problems, the existing Bayesian Filtering mechanism can produce the False Positives which misclassify the ham e-mails into the spam e-mails. In the proposed mechanism, the sending e-mails of the user are treated as the high quality of ham information, and are trained to the Bayesian ham DB automatically. In addition, by providing a different Bayesian DB to each e-mail user respectively, more efficient e-mail filtering service is possible. Our experiments show the improvement of filtering accuracy by 3.13 %, compared to the existing Bayesian Filtering mechanism.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 07일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:30 오후