• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

UCI 데이터셋을 활용한 포르투갈 레드 와인의 품질관리성분 및 관리기준 예측 분석 연구: CART 알고리즘 기반의 의사결정나무(Decision tree) 기법을 중심으로 (A study on the prediction analysis of quality control components and control criteria for portuguese red wine using UCI Dataset: Focusing on the decision tree techniques by CART algorithm)

17 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2021.08
17P 미리보기
UCI 데이터셋을 활용한 포르투갈 레드 와인의 품질관리성분 및 관리기준 예측 분석 연구: CART 알고리즘 기반의 의사결정나무(Decision tree) 기법을 중심으로
  • 미리보기

    서지정보

    · 발행기관 : 한국호텔외식관광경영학회
    · 수록지 정보 : 호텔경영학연구 / 30권 / 6호 / 239 ~ 255페이지
    · 저자명 : 유재호, 이계희

    초록

    본 연구는 UCI 데이터셋의 레드 와인 데이터를 활용하여 와인 품질에 영향을 미치는 품질 성분을예측하고, 예측된 성분을 바탕으로 품질 기준을 예측하고자 하였다. 데이터셋은 포르투갈의 비뉴베르드(Vinho verde)에서 생산된 레드와인의 11가지 성분 변수, 전문가 평가에 의한 1개의 주관적, 정성적 와인품질 변수와 총 1599개의 관측치로 구성되었다. 와인 품질을 종속 변수로 선정하고, 종속변수에 영향을 미치는독립변수로서의 와인 품질 특성 성분과 그 기준을 예측하기 위해 CART 알고리즘을 바탕으로 한 의사결정나무(Decision tree) 기법을 통한 분석을 실시하였다. 이의 결과로 알콜농도(A), 황산염(S), 휘발산(VA), 산도(pH)의 4가지 성분 변수가 품질 예측 변수로 도출되었다. 도출된 4가지 품질 예측변수는 인공신경망 MLP알고리즘, AIC값, regsubsets 함수 알고리즘을 통해 교차 검증되었다. 품질 예측 변수의 관리 기준은 CART 알고리즘의 분석 결과인 분기 기준 값을 적용하였다. 이의 결과로 가장 높은 와인 품질(와인 품질 6.8)의성분 기준은 알콜(11<=, <12), 황산염(0.65<=), 휘발산도(<0.4), pH(<3.3)으로 예측되었다. 일정 수준의 고품질의 와인(와인 품질 6.7)의 성분 기준은 알콜(12<), 황산염(0.65<)으로 예측되었다. 이러한 예측된 성분기준은 와인 생산의 품질 관리에 적용이 가능한 것으로 보이며, 적절한 성분 예측을 통한 품질 관리는 최종제품을 분류하는 기준의 하나로서 제시가 가능할 것으로 보인다.

    영어초록

    This study aims to predict the components and the criteria for wine quality evaluation by utilizing red wine data from the UCI Machinery Learning Repository Data set (UCI, hereafter). The predicting model consisted of 11 ingredient variables of red wine produced in Vinho Verde, Portugal, with subjective and qualitative wine quality variable by expert evaluation, and a total of 1,599 observations. Analysis was conducted using the decision tree technique based on the CART algorithm, and the results identified 4 independent variables, including alcohol (A), sulfate (S), volatile (VA), and acidity (pH) as key quality predictors of wine. The highest wine quality was determined at 6.8 point (all case mean = 5.64) and the 4 dependent variables (A, S, VA & pH) with a certain Splitting Criterion point for each (11≤ A<12; S≤0.65; V<0.4; pH<3.3) turned out to be influential predictors for the wine quality for 6.8 and above. Also, these independent variables were cross-validated through the artificial neural network, namely MLP algorithm, AIC value, and regsubsets function algorithm. These criteria can be applicable to the quality control of wine industry practitioners. Practical implications were presented for wine marketers and producers

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“호텔경영학연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 17일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:57 오후