• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터셋 품질 개선을 위한 Self-Supervised Vision Transformer 기반의 객체 Pseudo-label 생성 기법 (An Object Pseudo-Label Generation Technique based on Self-Supervised Vision Transformer for Improving Dataset Quality)

10 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2024.01
10P 미리보기
데이터셋 품질 개선을 위한 Self-Supervised Vision Transformer 기반의 객체 Pseudo-label 생성 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 51권 / 1호 / 49 ~ 58페이지
    · 저자명 : 김도현, 전지웅, 임성택, 이홍철

    초록

    이미지 분할은 이미지에 존재하는 객체를 객체 상자로 지역화하고 픽셀을 적절한 범주로 분류하는 컴퓨터 비전의 중요한 분야 중 하나이다. Instance segmentation 모델의 성능을 위해서는 다양한 크기의 객체에 대한 라벨을 가진 데이터셋이 요구된다. 하지만 최근 공개된 ‘Small Object Detection을 위한 이미지’ 데이터셋은 크기가 크고 일반적인 객체에 대한 라벨이 부족하여 잠재적 성능 저하를 유발한다. 본 논문에서는 위와 같은 문제를 해결하기 위해 비지도 학습 기반의 pseudo-labeling 방법론을 응용하여 일반적인 객체에 대한 pseudo-label을 생성함으로써 데이터셋의 품질을 개선한다. 실험결과, 기존 데이터셋 대비 작은 객체 분할 성능이 (+2.54 AP) 증가하였다. 추가적으로 적은 양의 데이터를 이용한 경우에서도 성능의 증가도 확인할 수 있었다. 이에 따라 제안된 방법론을 통해 효과적으로 데이터셋의 품질이 개선된 것을 확인할 수 있었다.

    영어초록

    Image segmentation is one of the most important tasks. It localizes objects into bounding boxes and classifies pixels in an image. The performance of an Instance segmentation model requires datasets with labels for objects of various sizes. However, the recently released 'Image for Small Object Detection' dataset has large and common objects that lack labels, causing potential performance degradation. In this paper, we improve the quality of datasets by generating pseudo-labels for general objects using an unsupervised learning-based pseudo-labeling methodology to solve the aforementioned problems. Specifically, small object detection performance was improved by (+2.54 AP) compared to the original dataset. Moreover, we were able to prove an increase in performance using only a small amount of data. As a result, it was confirmed that the quality of the dataset was improved through the proposed method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:03 오전