• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

자율협력주행을 위한 센서전용시설물의 데이터셋 구축 (Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving)

10 페이지
기타파일
최초등록일 2025.05.25 최종저작일 2024.01
10P 미리보기
자율협력주행을 위한 센서전용시설물의 데이터셋 구축
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 29권 / 1호 / 21 ~ 30페이지
    · 저자명 : 이형, 박철우, 이한동, 이준혁

    초록

    본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.

    영어초록

    In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 25일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:28 오후