• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

GR-tree: 무선 센서 네트워크에서 에너지 효율적인 분산 공간색인기법 (The GR-tree: An Energy-Efficient Distributed Spatial Indexing Scheme in Wireless Sensor Networks)

12 페이지
기타파일
최초등록일 2025.05.21 최종저작일 2011.10
12P 미리보기
GR-tree: 무선 센서 네트워크에서 에너지 효율적인 분산 공간색인기법
  • 미리보기

    서지정보

    · 발행기관 : 대한공간정보학회
    · 수록지 정보 : Spatial Information Research / 19권 / 5호 / 63 ~ 74페이지
    · 저자명 : 김민수, 장인성

    초록

    최근 특정 공간영역 내에 포함되는 센서노드들만의 센싱정보를 에너지 효율적으로 수집하는 센서 네트워크 기반 공간질의처리에 대한 관심이 증가하고 있다. 이러한 센서 네트워크 기반 공간질의처리의 가장 단순한 방법은 모든 센서노드의 위치와 센싱정보를 서버로 수집한 다음, 서버에서 공간질의를 처리하는 Centralized 방법이다. 이 방법은 간단하다는 장점은 있지만, 모든 센서노드를 접근하기 위하여 소요되는 높은 무선통신 비용으로 인하여 센서노드의 에너지 효율성이 크게 떨어지는 단점을 가지고 있다. 이러한 Centralized 방법을 보완하기 위하여 센서노드에서 분산 공간 필터링을 수행하여 센서노드 간의 무선통신 횟수를 감소시키는 In-network 기반 분산 공간색인기법들이 제안되어 왔다. 그러나, 이러한 분산 공간색인기법들은 대부분 서버에서 이용되던 기존 공간색인기법들을 센서 네트워크에 단순히 적용하였기 때문에, In-network 환경에서 공간 필터링의 효과와 센서노드들 간의 무선 라우팅을 동시에 최적화하지 못하는 단점을 가지고 있다. 이에 본 논문에서는 In-network 환경에서 공간 필터링을 최적화하면서 동시에 센서노드들 간의 라우팅을 보장할 수 있는 GR-tree의 새로운 분산 공간색인기법을 제안하고자 한다. GR-tree 방법은 R-tree와 유사하게 MBR 기반의 트리를 구성하며, 센서노드들 간의 무선 라우팅 및 공간적인 인접성을 보장하면서 MBR들 간의 겹침을 최소화할 수 있는 특징을 가지고 있다. 끝으로, GR-tree와 기존 방법들의 다양한 성능 비교 실험을 통하여 제안된 방법의 효율성을 보여주고자 한다.

    영어초록

    Recently, there has been much interest in the spatial query which energy-efficiently acquires sensor readings from sensor nodes inside specified geographical area of interests. The centralized approach which performs the spatial query at a server after acquiring all sensor readings, though simple, it incurs high wireless transmission cost in accessing all sensor nodes. In order to remove the high wireless transmission cost, various in-network spatial indexing schemes have been proposed. They have focused on reducing the transmission cost by performing distributed spatial filtering on sensor nodes. However, these in-network spatial indexing schemes have a problem which cannot optimize both the spatial filtering and the wireless routing among sensor nodes, because these schemes have been developed by simply applying the existing spatial indexing schemes into the in-network environment. Therefore, we propose a new distributed spatial indexing scheme of the GR-tree. The GR-tree which forms a MBR-based tree structure, can reduce the wireless transmission cost by optimizing both the efficient spatial filtering and the wireless routing. Finally, we compare the existing spatial indexing scheme through extensive experiments and clarify our approach’s distinguished features.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Spatial Information Research”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 26일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:35 오전