• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

빅데이터 활용에 영향을 미치는 개인정보 규제요인과 데이터 결합요인의 탐색 (An Exploration on Personal Information Regulation Factors and Data Combination Factors Affecting Big Data Utilization)

18 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2020.04
18P 미리보기
빅데이터 활용에 영향을 미치는 개인정보 규제요인과 데이터 결합요인의 탐색
  • 미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 30권 / 2호 / 287 ~ 304페이지
    · 저자명 : 김상광, 김선경

    초록

    그동안 데이터 개방, 기술수용이론 등 빅데이터 활용의 영향요인에 대한 법․정책적 연구는 다수 있었으나, 제약선 역할을 하는 개인정보 규제요인 또는 데이터 결합요인이 빅데이터 활용에 미치는 영향에 대한 실증연구는 거의없었다. 이에 본 연구는 델파이 분석(Delphi Analysis)을 통해 빅데이터 활성화에 부정적(-) 관계를 보이는 개인정보 규제요인과 긍정적(+) 효과를 보이는 데이터 결합요인이 무엇으로 구성되는지 요인의 우선순위를 시론적으로탐색하였다. 델파이 분석결과, 개인정보 규제요인은 가명정보 등 활용제도 도입, 개인정보 비식별화 근거 명확성, 데이터 결합규정 명확성, 개인정보 정의 명확성, 개인정보 동의 용이성, 개인정보 감독기구 통합, 개인정보 법률간 정합성, 법령위반시 적정 처벌강도, EU GDPR 비교시 적정 과징금 순으로 상위요인이 조사되었다. 다음으로 데이터결합요인은 결합 비식별성, 결합데이터 표준화, 결합 책임성, 결합기관 유형, 경합경험, 결합 기술가치 순으로 조사되었다. 이러한 연구결과는 빅데이터 활성화를 위해 개인정보 규제와 데이터 결합정책 설계 시 어느 구성요인을 우선적으로 제도개선 해야 하는지 시사점을 제공한다.

    영어초록

    There have been a number of legal & policy studies on the affecting factors of big data utilization, but empiricalresearch on the composition factors of personal information regulation or data combination, which acts as a constraint, hasbeen hardly done due to the lack of relevant statistics. Therefore, this study empirically explores the priority of personalinformation regulation factors and data combination factors that influence big data utilization through Delphi Analysis. As aresult of Delphi analysis, personal information regulation factors include in order of the introduction of pseudonymousinformation, evidence clarity of personal information de-identification, clarity of data combination regulation, clarity ofpersonal information definition, ease of personal information consent, integration of personal information supervisory authority,consistency among personal information protection acts, adequacy punishment intensity in case of violation of law, andproper penalty level when comparing EU GDPR. Next, data combination factors were examined in order of de-identificationof data combination, standardization of combined data, responsibility of data combination, type of data combination institute,data combination experience, and technical value of data combination. These findings provide implications for which policytasks should be prioritized when designing personal information regulations and data combination policies to utilize big data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:14 오후