• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

기상학적 가뭄, 농업 가뭄 및 빅데이터 현장가뭄간의 상관성 평가 (Evaluation of the Relationship between Meteorological, Agricultural and In-situ Big Data Droughts)

16 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2016.03
16P 미리보기
기상학적 가뭄, 농업 가뭄 및 빅데이터 현장가뭄간의 상관성 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 19권 / 1호 / 64 ~ 79페이지
    · 저자명 : 이지완, 장선숙, 안소라, 박기욱, 김성준

    초록

    본 논문의 목적은 SPI 기상학적 가뭄지수, 농업용 저수지 저수율, 농업가뭄 빅데이터간의 관계를 평가함으로써 빅데이터의 활용 가능성을 평가하는데 있다. 2014년 1월부터 2015년 9월까지의 장기가뭄을 대상으로, SPI-12개월 가뭄지수, 평년대비 강수부족율, 농업용저수지 저수부족율, 인터넷포털 검색을 통한 농업가뭄 빅데이터를 월단위 도별로 수집 및 분석하였다. SPI-12의 최대 가뭄심도와 최대 저수 부족율이 나타난 시기를 비교한 결과, 전국적으로 2014년은 7월, 2015년은 8월과 9월에 시기를 같이 하면서 발현되었다. 한편, 빅데이터의 도별 최대 발현시기는 2014년 6월과 7월, 2015년은 3월, 6월~9월에 나타나, SPI-12와 저수 부족율의 최대심도보다 2014년은 1개월, 2015년은 여름에 2개월 이르게 나타났다. 이는 빅데이터가 3월부터의 봄가뭄, 6월의 늦장마, 7월의 마른장마에 이어 2015년은 9월까지의 강우량 부족에 따라 기상학적 가뭄과 농업가뭄에 민감하게 반응하는 것을 의미하며, 농업가뭄관련 빅데이터의 활용이 가뭄의 위험관리에 효과가 있을 것으로 판단된다.

    영어초록

    The purpose of this study is to find the relationship between precipitation deficit, SPI(standardized precipitation index)-12 month, agricultural reservoir water storage deficit and agricultural drought-related big data, and to evaluate the usefulness of agricultural risk management through big data. For the long term drought (from January 2014 to September 2015), each data was collected and analysed with monthly and Provincial base. The minimum SPI-12 and maximum reservoir water storage deficit compared to normal year were occurred at the same time of July 2014, and August and September 2015. The maximum frequency of big data was occurred at June and July of 2014, and March and June to September of 2015. The maximum big data was occurred 1 month advanced in 2014 and 2 months advanced in 2015 than the maximum reservoir water storage deficit. The occurrence of big data was sensitive to spring drought from March, late Jangma of June, dry Jangma of July and the rainfall deficit of September 2015. The big data was closely related with the meteorological drought and agricultural drought. Because the big data is the in situ feeling drought, it is proved as a useful indicator for agricultural risk management.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 23일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:57 오후