• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

머신러닝을 이용한 빅데이터 품질진단 자동화에 관한 연구 (A Study on Automation of Big Data Quality Diagnosis Using Machine Learning)

12 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2017.12
12P 미리보기
머신러닝을 이용한 빅데이터 품질진단 자동화에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 사)한국빅데이터학회
    · 수록지 정보 : 한국빅데이터학회 학회지 / 2권 / 2호 / 75 ~ 86페이지
    · 저자명 : 이진형

    초록

    본 연구에서는 빅데이터의 품질을 진단하는 방법을 자동화하는 방법을 제안하고 있다. 빅데이터의 품질 진단을 자동화해야 하는 이유는 4차 산업혁명이 이슈화 되면서 과거보다 더 많은 볼륨의 데이터를 발생 시키고 이 데이터들을 활용 하려는 요구가 증가하기 때문이다. 데이터는 급증하지만 데이터의 품질을 진단하기 위해 많은 시간이 소비된다면 데이터를 활용하기 위해 많은 시간이 걸리거나 데이터의 품질이 낮아질 수있다. 그러면 이러한 낮은 품질의 데이터로부터 의사결정이나 예측을 한다면 그 결과 또한 잘못된 방향을 제시할 것이다. 이러한 문제를 해결하기 위해 많은 데이터를 신속하게 진단하고 개선할 수 있는 머신러닝 이용한 빅데이터 품질 향상을 위한 진단을 자동화 할 수 있는 모델을 개발하였다. 머신러닝을 이용하여 도메인 분류 작업을 자동화하여 도메인 분류 작업 시 발생할 수 있는 오류를 예방하고 작업 시간을 단축시켰다.
    연구 결과를 토대로 데이터 변환의 중요성, 학습되지 않은 데이터에 대한 학습 시킬 수 있는 방안 모색, 도메인별 분류 모델을 개발에 대한 연구를 지속적으로 진행한다면 빅데이터를 활용하기 위한 데이터 품질 향상에 기여할 수 있을 것이다.

    영어초록

    In this study, I propose a method to automate the method to diagnose the quality of big data. The reason for automating the quality diagnosis of Big Data is that as the Fourth Industrial Revolution becomes a issue, there is a growing demand for more volumes of data to be generated and utilized. Data is growing rapidly. However, if it takes a lot of time to diagnose the quality of the data, it can take a long time to utilize the data or the quality of the data may be lowered.
    If you make decisions or predictions from these low-quality data, then the results will also give you the wrong direction.
    To solve this problem, I have developed a model that can automate diagnosis for improving the quality of Big Data using machine learning which can quickly diagnose and improve the data. Machine learning is used to automate domain classification tasks to prevent errors that may occur during domain classification and reduce work time. Based on the results of the research, I can contribute to the improvement of data quality to utilize big data by continuing research on the importance of data conversion, learning methods for unlearned data, and development of classification models for each domain.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국빅데이터학회 학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:51 오전