PARTNER
검증된 파트너 제휴사 자료

Count-Min HyperLogLog : 네트워크 빅데이터를 위한 카디널리티 추정 알고리즘 (Count-Min HyperLogLog : Cardinality Estimation Algorithm for Big Network Data)

9 페이지
기타파일
최초등록일 2025.05.17 최종저작일 2023.06
9P 미리보기
Count-Min HyperLogLog : 네트워크 빅데이터를 위한 카디널리티 추정 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국정보보호학회
    · 수록지 정보 : 정보보호학회논문지 / 33권 / 3호 / 427 ~ 435페이지
    · 저자명 : 강신정, 양대헌

    초록

    카디널리티 추정은 실생활의 많은 곳에서 사용되며, 큰 범위의 데이터를 처리하는 데 근본적 문제이다. 인터넷이 빅데이터의 시대로 넘어가며 데이터의 크기는 점점 커지고 있지만, 작은 온칩 캐시 메모리만을 이용하여 카디널리티 추정이 이뤄진다. 메모리를 효율적으로 사용하기 위해서, 지금까지 많은 방법이 제안되었다. 그러나, 이러한 알고리즘에서는 estimator 간의 노이즈 발생으로 인해 정확도가 떨어지는 일이 발생한다. 이 논문에서는 노이즈를 최소화하는데 중점을 뒀다. 우리는 여러 개의 데이터 구조를 제안하여 각 estimator가 데이터 구조 수만큼의 추정값을 가지고, 이 중 가장 작은 값을 선택하여 노이즈를 최소화한다. 실험을 통해 이 방법이 이전의 가장 좋은 방법과 비교했을 때, 플로우당 1 bit와 같은 작은 메모리를 사용하면서 더 좋은 성능을 보이는 것을 확인했다.

    영어초록

    Cardinality estimation is used in wide range of applications and a fundamental problem processing a large range of data. While the internet moves into the era of big data, the function addressing cardinality estimation use only on-chip cache memory. To use memory efficiently, there have been various methods proposed. However, because of the noises between estimator, which is data structure per flow, loss of accuracy occurs in these algorithms. In this paper, we focus on minimizing noises. We propose multiple data structure that each estimator has the number of estimated value as many as the number of structures and choose the minimum value, which is one with minimum noises, We discover that the proposed algorithm achieves better performance than the best existing work using the same tight memory, such as 1 bit per flow, through experiment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보보호학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:58 오후