• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

형태소 분석을 통한 비정형 데이터 분류 연구 (A Study on the Classification of Unstructured Data through Morpheme Analysis)

8 페이지
기타파일
최초등록일 2025.05.16 최종저작일 2021.04
8P 미리보기
형태소 분석을 통한 비정형 데이터 분류 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 26권 / 4호 / 105 ~ 112페이지
    · 저자명 : 김성진, 최낙진, 이준동

    초록

    빅데이터 시대에 접어들며 데이터에 대한 관심이 폭발적으로 늘어나고 있다. 특히, 인터넷 및 소셜미디어의 발전은 새로운 데이터들의 생성으로 연결되어 빅데이터와 인공지능 시대의 실현과 융합 기술의새로운 장을 열 수 있게 되었으며, 과거에는 프로그램으로 다루지 못하던 데이터에 대한 분석 요구가많이 발생하고 있다.
    본 논문에서는 빅데이터 시대에서 많이 요구되는 비정형 데이터에 대한 분류를 위하여 분석 모델을 설계하고 이를 검증하였다. 데이터는 디비피아의 논문 요약과 주제어, 그리고 부주제 어를 크롤링하였으며, 코엔엘피의 데이터 사전을 이용해 데이터베이스를 생성하고, 형태소 분석을 통하여 단어의 토큰화 과정을 수행하였다.
    또한, 카이스트의 9 품사 분류 체계를 이용해 명사를 추출하고, TF-IDF 값을 생성하였으며, 학습 데이터와Y 값을 결합하여 분석 데이터 셋을 생성하였다. 이와 같이 생성된 분석 데이터 셋에 랜덤 포레스트와 서포트벡터 머신 그리고 의사결정트리, 이렇게 세 가지 분석 알고리즘을 적용하여 분류의 적정성을 측정하였다.
    본 논문에서 제안한 분류 모델 기법은 논문 분류 외에도 민원 분류 분석 및 텍스트 관련 분석 등 다양한분야에 유용하게 사용될 수 있다.

    영어초록

    In the era of big data, interest in data is exploding. In particular, the development of the Internet and social media has led to the creation of new data, enabling the realization of the era of big data and artificial intelligence and opening a new chapter in convergence technology. Also, in the past, there are many demands for analysis of data that could not be handled by programs.
    In this paper, an analysis model was designed and verified for classification of unstructured data, which is often required in the era of big data. Data crawled DBPia's thesis summary, main words, and sub-keyword, and created a database using KoNLP’s data dictionary, and tokenized words through morpheme analysis. In addition, nouns were extracted using KAIST's 9 part-of-speech classification system, TF-IDF values were generated, and an analysis dataset was created by combining training data and Y values. Finally, The adequacy of classification was measured by applying three analysis algorithms(random forest, SVM, decision tree) to the generated analysis dataset.
    The classification model technique proposed in this paper can be usefully used in various fields such as civil complaint classification analysis and text-related analysis in addition to thesis classification.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:26 오후