• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가 (Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment)

8 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2009.01
8P 미리보기
불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국융합신호처리학회
    · 수록지 정보 : 융합신호처리학회 논문지 / 10권 / 1호 / 72 ~ 79페이지
    · 저자명 : 류장희, 정지채

    초록

    본 논문에서는 불균일한 클러터 환경에서 다양한 정규화 방법을 사용한 NHD(nonhomogeneity detector) 기술을 통해 비행체 레이더를 위한 STAP(space-time adaptive processing)의 성능 평가를 수행하였다. 실제로 클러터는 시스템 환경에 따라 임펄스 신호와 같은 신호의 크기가 매우 큰 간섭 신호를 종종 포함하고 있기 때문에 수신된 간섭 신호는 균일한 신호와 불균일한 신호로 구성된다. 이 환경에서 STAP의 성능을 유지하기 위해서는 NHD 기술이 필수적이고, 그 NHD 결과를 이용한 정규화는 불균일한 신호를 제거하는데 효과적인 방법이다. 최적의 정규화는 주어진 데이터의 특성을 잘 고려한 대푯값을 통해서 가능하고, 이에 우리는 K 평균 군집화 알고리즘을 제안한다. 이 알고리즘에서는 군집화에 필요한 묶음의 수를 결정할 때 불규칙한 데이터의 특성을 고려할 수 있게 되고 군집화 된 결과를 이용해 균일한 데이터만을 선택하기 위한 대푯값을 결정할 수 있게 된다. 또한 여기서 우리는 시시각각 변화하는 불규칙적인 데이터의 특성을 잘 반영하기 위해, 적절한 묶음의 수를 결정하기 위한 방법을 연구한다. 시뮬레이션 결과를 통해 K 평균 군집화 알고리즘이 기존의 정규화 방법들에 비하여 매우 우수한 정규화와 목표물 검출 성능을 갖는 것을 확인할 수 있었다.

    영어초록

    This paper describes the performance evaluation of NHD(nonhomogeneity detector) for STAP(space-time adaptive processing) airborne radar according to various normalization methods in the nonhomogeneous clutter environment. In practice, the clutter can be characterized as random variation signals, because it sometimes includes signals with very large magnitude like impulsive signal due to the system environment. The received interference signals are composed of homogeneous and nonhomogeneous data. In this situation, NHD is needed to maintain the STAP performance. The normalization using the NHD result is an effective method for removing the nonhomogeneous data. The optimum normalization can be performed by a representative value considered with a characteristic of the given data, so we propose the K-means clustering algorithm. The characteristic of random variation data due to nonhomogeneous clutters can be considered by the number of clusters, and then the representative value for selecting the homogeneous data is determined in the clustering result. In order to reflect a characteristic of the nonstationary interference data, we also investigate the algorithm for a calculation of the proper number of clusters. Through our simulations, we verified that the K-means clustering algorithm has very superior normalization and target detection performances compared with the previous introduced normalization methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합신호처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 10일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:55 오전