• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교 (Comparison of ANN model’s prediction performance according to the level of data uncertainty in water distribution network)

9 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2022.12
9P 미리보기
상수도관망 내 데이터 불확실성에 따른 절점 압력 예측 ANN 모델 수행 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 55권 / 1295 ~ 1303페이지
    · 저자명 : 장혜운, 정동휘, 전상훈

    초록

    안정적인 수도 공급을 위한 상수도관망의 역할이 더욱 주목받음에 따라 비정상 상황에 대한 신속한 탐지와 적절한 대처 역시 중요시되고 있다. 장치에 의존한 탐지기법 등 기존의 방법론에는 한계가 존재하므로 데이터를 이용한 모델 기반의 방법이 개발되었다. 하지만 상수도관망 내 측정 데이터는 불확실성을 가져 실제 사용량과 다르다. 따라서 본 연구에서는 기계학습 방법의 하나인 인공신경망 모델을 이용하여 상수도관망 압력값을 예측함에 있어 데이터 불확실성의 영향을 조사한다. 정규분포를 따르는 임의의 값을 고려하여 데이터에 측정치 오류를 형성하고 측정치 오류 여부 및 종류에 따라 총 9가지 데이터를 인공신경망 모델을 통해 예측해 경향성을 비교한다. 분석을 통해 데이터 불확실성이 증가할수록 모델 성능이 감소하며, 출력데이터의 측정치 오류가 모델 성능에 미치는 정도가 더 큼을 확인하였다. 특히 입력데이터와 출력데이터의 측정 오차 크기가 동일한 경우 예측 정확도는 각각 72.25%, 38.61%로 큰 차이를 보였다. 따라서 ANN 모델 예측 성능 향상을 위해서는 입력 데이터보다 출력데이터인 주 절점의 측정 오류 크기를 줄이는 것이 중요하다.

    영어초록

    As the role of water distribution networks (WDNs) becomes more important, identifying abnormal events (e.g., pipe burst) rapidly and accurately is required. Since existing approaches such as field equipment-based detection methods have several limitations, model-based methods (e.g., machine learning based detection model) that identify abnormal events using hydraulic simulation models have been developed. However, no previous work has examined the impact of data uncertainties on the results. Thus, this study compares the effects of measurement error-induced pressure data uncertainty in WDNs. An artificial neural network (ANN) is used to predict nodal pressures and measurement errors are generated by using cumulative density function inverse sampling method that follows Gaussian distribution. Total of nine conditions (3 input datasets × 3 output datasets) are considered in the ANN model to investigate the impact of measurement error size on the prediction results. The results have shown that higher data uncertainty decreased ANN model’s prediction accuracy. Also, the measurement error of output data had more impact on the model performance than input data that for a same measurement error size on the input and output data, the prediction accuracy was 72.25% and 38.61%, respectively. Thus, to increase ANN models prediction performance, reducing the magnitude of measurement errors of the output pressure node is considered to be more important than input node.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:47 오전