• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가 (Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim)

14 페이지
기타파일
최초등록일 2025.05.15 최종저작일 2022.10
14P 미리보기
airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 55권 / 10호 / 761 ~ 774페이지
    · 저자명 : 이가림, 이송희, 김보미, 우동국, 노성진

    초록

    가뭄과 홍수의 예측, 기후변화가 유역 유출량, 더 나아가 수질 및 생태계에 미치는 영향의 정확한 분석을 위해서는 수문 모의 과정의 불확실성을 정량화하고 최소화하기 위한 노력이 필요하다. 수문자료동화는 수문모형의 상태량이나 매개변수를 갱신(update)하여 모의 초기 조건의 가장 가능성 있는 추정치를 생성하는 기법으로, 실시간 관측 정보를 이용하여 예측 정확도를 향상시킬 수 있는 방법이다. 본 연구에서는 airGRdatassim 모형을 이용하여 앙상블 기반 순차 자료동화 기법인 앙상블 칼만 필터와 파티클 필터로 용담댐 유역에 대해 일 유출을 모의하고, 자료동화 기법별 특성을 비교 및 분석하였다. 모의 결과, Kling-Gupta efficiency (KGE) 지표가 자료동화 적용 전 0.799에서 앙상블 칼만 필터와 파티클 필터 적용시 각각 0.826, 0.933으로 향상되었다. 또한 기상 강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 수 등 수문자료동화의 설정과 관련된 하이퍼-매개변수(hyper-parameter)의 불확실성이 모의 예측 성능에 미치는 영향을 분석하였다. 강수 및 잠재 증발산 강제력의 오차 범위에 대한 민감도 분석 결과, 모든 모의 범위에서 파티클 필터가 앙상블 칼만 필터보다 예측 성능이 우수하였다. 파티클 필터는 기상 강제력 오차 크기가 작을수록 모의 성능이 향상되었으며, 앙상블 칼만 필터는 상대적으로 오차가 큰 경우 최적 성능이 확인되었다. 한편, 자료동화시 갱신되는 상태량의 종류를 줄일수록 자료동화에 의한 모의 성능은 감소하였다. 본 연구의 모의 실험 결과는 앙상블 자료동화를 이용하여 일 유출 모의 정확도 향상이 가능하지만, 최적 성능을 발휘하기 위해서는 수문자료동화 기법별 하이퍼-매개변수의 적정한 조정이 필요함을 함의한다.

    영어초록

    Accurate hydrologic prediction is essential to analyze the effects of drought, flood, and climate change on flow rates, water quality, and ecosystems. Disentangling the uncertainty of the hydrological model is one of the important issues in hydrology and water resources research. Hydrologic data assimilation (DA), a technique that updates the status or parameters of a hydrological model to produce the most likely estimates of the initial conditions of the model, is one of the ways to minimize uncertainty in hydrological simulations and improve predictive accuracy. In this study, the two ensemble-based sequential DA techniques, ensemble Kalman filter, and particle filter are comparatively analyzed for the daily discharge simulation at the Yongdam catchment using airGRdatassim. The results showed that the values of Kling-Gupta efficiency (KGE) were improved from 0.799 in the open loop simulation to 0.826 in the ensemble Kalman filter and to 0.933 in the particle filter. In addition, we analyzed the effects of hyper-parameters related to the data assimilation methods such as precipitation and potential evaporation forcing error parameters and selection of perturbed and updated states. For the case of forcing error conditions, the particle filter was superior to the ensemble in terms of the KGE index. The size of the optimal forcing noise was relatively smaller in the particle filter compared to the ensemble Kalman filter. In addition, with more state variables included in the updating step, performance of data assimilation improved, implicating that adequate selection of updating states can be considered as a hyper-parameter. The simulation experiments in this study implied that DA hyper-parameters needed to be carefully optimized to exploit the potential of DA methods.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:56 오후